.

NASA TECHNICAL

NAsA‘fR1Ri33R -
;REPORT L

- - e
. . ’
} LD
i
-
oo .
P -

NASA jk,R;3389’\

PROGRAM ANALYSIS A PROBLEM
L IN MAN-COMPUTER COMMUNICATION

,/ W

- fe b e ,‘ " ,\— R
\ ‘/ '\’ LT AT :

by]osepb Green

T Electromcs Researcb Center - - [
Cazmbmdge, Mass. 02139 R

NATIONAL AERONAUTI(S AND SPACE ADMINISTRATH)N - WASHINGTON 0. c e JUNE 1970 -

1. Report No. 2, Government Accession Mo. 3. Recipient’s Catalog No.

NASA TR R-338

4. Title and Subtitle 5. Report Date
Program Analysis--A Problem in June 1970
Man-—Computer Commun i cation 6. Performing Organization Code
7. Author(s) J h oG 8. Performing Organization Report No.
osep reen C-89
9. Performing Organization Maome and Address 10. Work Unit No.

125-23-02-36-25

11. Contract or Grant No.

Electronics Research Center
Cambridge, Mass.

13. Type of Repost and Period Coversd

12,

Sponsoring Agency Name and Address

(National Aeronautics and Space Technical Report

Administration)

14, Sponsoring Agency Code

15.

Supplementary Notes

. Abstract

This report presents a display oriented scheme to help
the higher level language computer programmer to debug
and analyze programs. Timed visual interpretive execu-
tion and a variety of user instituted functions permit
an informative dialogue between the man and the computer.
A prototype implementation of the system using FORTRAN
as the higher level language is described,and the results
are discussed from the point of view of the system
developer as well as the point of view of the user. Also
treated is the problem of what a time-sharing system
should do to make graphical input tablets useful devices
in a time-shared environment.

7.

Key Words Debugging ° Graphics 18. Distribution Statement
-High level languages v
Interpretive compiler Unlimited
-Display -Interactive

19. Security Classif, {(of this report) 20. Security Classif, (of this page) 21. No. of Pages 22, Price ¥

Unclassified Unclassified 129 $3.00

*For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151

TABLE OF CONTENTS

Page
TABLE OF CONTENTS.cccenscscoaoncaacacsasosssosssonssooscsoseas il

..... T
SUMMARY . .. ccccavoveesoccaoscscoosscossea cesccsacescesasesaese . 1
CHAPTER I - INTRODUCTION - THE PROBLEM OF PROGRAM ANALYSIS
1.1 Trends in Computer USAge ...:.cecossscoscocccscos 2
1.2 The Present Solution to Program Analysis....... . 3
1.3 Interactive Graphics and Dynamic AnalysiS....... 4
CHAPTER II - GRAPE THEORY
2.1 BaSiCS..ecosenecacansee cessccssesccscaaesseenasanas 5
2.1.1 Unlfylng ConceptS..ccossensvossoesosnsasss . 5
2.1.2 HarAware. . .cocesoosososssconssscssssscacs 8
2.1.3 Display Set~UP:.cccscessecsoososscsacsssos 11
2.2 Source Program ExeCUtion.....:coceeaoooscocsaces . 11
2.2.1 Introduction and ExXample. ..c..ccssososscss 11
2.2.2 Non-executable Statements......cceoco0c00s 14
2.2.3 EXPresSSiONS. cecceocosscccsosscsssasoencsscas 14
2.2.4 Arithmetic Statements............. ceasses 17
2.2.5 Control StatementsS....c.ceoecnvcocoscoccsos 19
2.2.6 Logical Statements......ccoeeecacoconccscas 19
2.2.7 Iterative LOOPS..ccceessscoosssasosacacascss 21
2.2.8 Subroutine Calls....cceevocsscsaconooccacs 21
2.2.9 Input/Output. ... eieresceaccosaconnncanas 23
2.2.10 Speed Control and Related Statements..... 24
2.3 Execution FUNcCtionS...ceceesosscccasccsoscasonascs 25
2.3.1 Changes with Execution Stopped:
'~ “Null, —>, ROLL, RESTART, SAVE....... ceees 25
2.3.2 Changes During Execution:
Breaklines, Display and Set Variables,D . 30
2.4 Editing Functions.....voooesoe cecoans s ceceseans . 37
2.4.1 Changing Code:
>, M, A, OVErwriting, § «eeeeeeeorennns .. 37

2.4.2 Checking Code:
Line Numbers, Set Variables, Cross
References, Compiler Diagnostics,

UNUSED, TRASH..:occaanvonsocsss e s sssuscoe 39

2.5 Special SituationS.cccecesccosccossocncns cesosens 47
2.6 User's Manual..... cesscscacesenns ciaecseceseseses . 55

CHAPTER I1II - GRAPE PRACTICE

3.1 Novel Hardware and Software Building Blocks..... 56
3.1.1 Reqguired....c.s. cesesensaassecsceans ceacs D6
3.1.2 Provided...ecceessscoacccossscsse caveacsens . 57

3.2 Implemented GRAPE -- User Side........... saeaces 60
3.2.1 BAS1CS.ueecoooonaoscscanoscssssossscssssacsocs 60
3.2.2 Source Program ExecutioN.......ce.co.. ... 60
3.2.3 Execution FunctionS....cececoae- s ceaseccs . 61
3.2.4 Editing FunctionsS....cceeceecoccooccsosss . 66
3.2.5 User's ManuUal..ccceoeooosscsssoscccscsca eeoe 68

iii

3.3 Implemented GRAPE -- System Side....c... cecosaan 69
3.3.1 Concepts in the Programming.....ooeceooooo 69
3.3.2 Structure of the System......ccvenvocooscs 69
3.3.3 Data Structure......cvvecencsvasnssccccasns 70
3.3.4 Other System InformatiOn..c.cscosoossocsos 71
3.3.5 Graphical Input Tablet Interface......... 74
3.3.6 Language. ... cssoocccoosscoscssnconssssocosa 75
3.4 Results of Implementation..ceeocesoasooooanseaas 77
3.4.1 Teaching Tool/Analytic Tool.....eocavcsos 77
3.4.2 Debugging Tool/Programming Errors........ 78
CHAPTER IV - TIME-SHARING HIGH SPEED GRAPHICAL INPUT DEVICES
4.1 Central ProblemsS. ..ccacceasccscsoscossscccsocssss 83
4.2 What Must Be Provided....cesocecoesosccsocsososss 84
4,3 What Ought To Be Provided...aocesceasssoocasacncns 85
4.3.1 Feedback...oeeceesvsscosonsssconscsososoncss 85
4.3.2 Data COMPreSSiONe.caoceactossoocosossossss 86
4.4 What Might Be Provided...ccoeccoccscccaocsosonse 87
4.4.1 General........ s s e saesesccencooasass e e 87
4.4.2 Data Reduction..ccsoccssccacsasconancsssss 88
4.4.3 Improved Buffering....ce.sooococssoccooccnas 92
4.4.4 Mode AnalySiS...e.cceecesoscosacanccossonas 93
CHAPTER V - EXPANSION AND CONTRACTION OF GRAPHICAL
PROGRAM ANALYSIS
5.1 More Powerful Hardware and Software.....oeocesss 95
5.2 Less Powerful Hardware....cseoecoscoroonssoocoscossoe 98
5.2.1 Display, Light Pen, and Keyboard
Without Graphical Tablet...cceccoaocoaccs 98
5.2.2 Keyboard and Display Without
Light Pen.......evveeeocan Ceteceeaas s 102
5.2.3 Weaker Refresh Display..c.scosccscoonooss 102
5.2.4 Remote (Low Speed) Storage Display....... 105
5.3 CONCLlUSIONS. s ccsccossscsoscssoscsossanssosssa aesaal09
REFERENCES ..ccocscccecoscocscoososocsensnoossassoassecassesaaecs 111
APPENDIX A - GRAPE PROGRAM LISTING.:cceocesscoosacesccanceaocss 113

iv

Figure

LWoJou s Wi

LIST OF FIGURES

Page
Hardware SetUpP..ccsccsosocssoscsssccosasossscssoscsa 9
Tablet..20c.. s o s s aa e s s e s s osecoesssesesesanses o0 10
Speed Control...... 40 006 eoooacocsacecoaccesosseoen 10
Display SetUP..ccesoasoscessssesssocosscoscosssssass 12
Typical Display.cooccssoocsosososacssasosssssssscs 13
Display Messages When the Speed Is At STOP....... 28
Condensing A Program LOOP.:c:sascssoccnassnsosssss 33
Three Displayed VariableS....ccessceoncosscccsacos 41
Four Displayed VariableS.....cceecceasossa fas e 41
EXrror MeSSaAge. .ssecceoocossosoccnoccsasonasccssoscesss 43
Statement Cross Reference....coeceensescscnsosoass 44
Variable Cross Reference..... s esocsesesacacaseaae 45
Unused COe..cescsoosossnsocsssascsassnasocnsssssss 46
Trash File...c... G o s escsssacssecsssoseassesn e ses 48
Display OUtpUt..cseeoossoccescscsoscccosossocasssss 50
ARRAY (24)......... ceesessescssasasasen ceesesnans 52
ARRAY (4,3)cccrvcccncas C e eceaseacnsecaaccnnnn ... 53
ARRAY (50,9)..ccccesccoscccccana cesece s s e esoco s PN 54
Display SetUp..cccecosscosonosccsosacnsnscsssocnsass 62
Language SyntaX..c..e.sessoe 6o e sesessnoesecaecs s acas 63
Sample Statements.....c::co0000% cesocsesassseecnn 64
Typical Display...e.cecss s oosocossccesssosace s e e 65
GRAPE Block Diagram...ccecesosecses s esemcaccces ees 13
Program With An Infinite LOOP.::ccsocsoavcssvoses 80
Execution Of An Infinite LOOP..sccesovcccacosocns 81
Display Messages When The Speed Is At STOP.c..... 101
Speed Control.....ccovccceecccaoconssossscsosccss 103
Display Messages When The Speed Is At STOP....... 104
Display SetUPesccsosscoososoocossosssosnsoncssssasss 107

PROGRAM ANALYSIS — A PROBLEM
IN MAN-COMPUTER COMMUNICATION

By Joseph Green%*
Electronics Research Center

SUMMARY

The writer of higher level language computer programs has
few tools available to help him debug a program that he has
written or to help him understand a program that someone else
has written. This report presents a display oriented scheme to
aid in higher level language program analysis.

Using a computer driven refresh display for output and a
graphical tablet for input, the GRAPE (GRaphical Analysis of
Program Execution) system presents information to the user
about the source program as it is executing. About forty source
program statements are displayed on the screen at one time, and
as each statement executes, that statement is briefly modified
to show the results of the execution. Besides the source pro-
gram execution, execution functions such as the removal of blocks
of statements from the screen and editing functions such as the
setting of program variables comprise the system.

A prototype version of GRAPE has been implemented using

a subset of FORTRAN as the higher level language. The results
of the implementation are described from the point of view of
the system developer, as well as the point of view of the user.
Included is a description of how the system must be modified to
adapt to changes in the hardware configuration, ranging from a
three-dimensional display down to a remote (low speed) storage
display with keyboard input.

One other topic treated in this report is the problem of
what a time-~sharing system should do to make graphical input
tablets useful devices in a time-shared environment.

xSubmitted to Harvard University as Ph. D. thesis in Applied
Mathematics May 1969.

I. INTROCDUCTION - THE PROBLEM OF PROGRAM ANALYSIS
1.1 Trends in Computer Usage

Although computer programming is commonly taught in schools
and businesses and is a skill required by many people, relatively
little attention has been paid to the problems of programming.
More study and analysis has been given to the problem of tape
operating systems, for example, than has been given to the
more general problem of how to make a tape operating system,
or any other program, run successfully once the basic design
is worked out.

The initial programming of a procedure used to control a
computer has been aided by the development of computer languages
designed for specific uses, but the manipulation and analysis
of a computer program in order either to correct an improperly
written program or to understand a basically correct program
remains exceedingly difficult. The latter problem especially
needs attention for purposes of teaching programming and because
it is frequently true that it is easier to rewrite a program
than to modify a program written by someone else. As yet, few
tools exist to help an individual understand the structure of
a given computer program.

Several mutually reinforcing trends in computer utilization
are accentuating this lack. First is the trend toward having
non-professional computer users. If highly repetitive, time
consuming jobs are to be automated, it may make sense to have
an expert program for maximum efficiency. And if an engineer
or physicist decides to learn to use computers, he already
has much of the knowledge necessary to be adept at computer
programming. But as uses for computers are developed in fields
which are not computer oriented, the users become less profi-
cient. Programming becomes more of a chore, and some automatic
assistance is more desirable.

Second, and coupled with the above, is the trend toward
using the computer as an occasional tool rather than as the
focal point of a project. Programs are written quickly, used
once or twice, and then discarded. As a result, the time spent
preparing programs is extremely high in proportion to the time
spent interacting with the computer.

Third is the increasing use of higher level languages
such as FORTRAN, MAD, ALGOL, PL/I. Programming is easier to
learn and programs are faster to write when higher level
languages are used. However, the writer of an assembly language

program has an understanding of the execution, or lack of
execution, of his program which the writer of a higher level
language program lacks.

A fourth trend is the rapid increase in computer installa-
tions. With more computers in existence, the chances are
greater that someone else has already written a program which
will do almost what one wants his program to do.

As prople who are not professional programmers begin to
use higher level languages to quickly write or modify computer
programs to assist them in their work, it becomes more and more
desirable to have effective ways to deal with and understand
computer programs. This is true both for the relatively exper-
ienced programmer with a complicated problem and for the novice
programmer with a simple problem, if either of them must sit at
a desk and simulate the operation of the computer because his
program gave no output or did not work.

1.2 The Present Solution to Program Analysis

The higher level language programmer, whether he is learn-
ing to program, trying to correct a complicated program he has
written, or trying to modify a program written by someone else,
would like to know how the program operates. Instead, what he
has been getting for communication with his program is vestiges
of the operation of his program from which he attempts to recon-
struct what must have happened. When he is most unlucky, he
gets nothing to guide him except the fact that his program failed.
When he is luckier, he gets a memory dump. Memory dumps at the
time of program failure constitute one extreme of description.
None of the program operation is described, just the final results
of its operation. At the other extreme is a machine cycle by
machine cycle indication of the state of the computer. This
sounds frightening and indeed it is, but countless programs
written in a higher level language have been debugged at the
console of a small computer because memory dumps and one day
turnaround made batch process debugging a less desirable alter-
native.

The so called trace features of some compilers (ref. 1) are
a decided improvement on this mode of operation. Yet they do
not make debugging a simple task. If the user gets the message
that WEIGHT has just been set to one million, he may indeed
immediately realize that his error is in the only statement that
sets the value of X which is then used to compute WEIGHT. But-
a more frequent situation is that a variable used as a counter
is being set incorrectly. To discover this error requires that the
results of all arithmetic statements be listed, but more important,

w

it requires that the individual mentally put the message
"I = 4" into the framework of his entire program. A good analy-
sis system must as much as possible supply that framework.

Using these same features on a time-sharing system means
that one can be selective about what is traced and can hopefully
locate errors with several short runs rather than be inundated
with trace data. But this also does not supply the context of
the program in which a particular statement is executed. 1In
addition, it is useless for finding errors in which a program
decision is based on a comparison of variables X and Y instead
of X and Z. And it is useless for giving insight into the way
an unfamiliar program is structured.

A major fault in all the methods above, except for console
analysis, is they all leave the user trying to figure out what
happened instead of letting him see what is happening. A major
fault of trace features, because of time and space limitations,
is that they are highly selective in the information they supply.
A major fault of console analysis and memory dumps is that they
convey information in a language which may be unfamiliar or un-
known to the user (assembly language if he is lucky, octal num-
bers if he is not) and, in any case, is not the language in
which he is attempting to communicate with the computer.

1.3 Interactive Graphics and Dynamic Analysis

The higher level language programmer trying to analyze a
program would be aided in his understanding if he could see the
effect of all the statements in the program. The data trans-
mission rate of a teletype is much too slow to make this fea-
sible, but a computer driven display which is being refreshed
through the computer output channel can show new information
far faster than the human observer can digest it (ref. 2).
While a teletype can produce perhaps 15 characters per second,
displays can produce up to 75,000. This means that there is
no need for the output to be selective or for words to be abbre-
viated. There is ample time to display all the information
which the programmer would like to see, including any back-
ground information which might help his understanding. Because
display images disappear after they have been on the screen
and because there are display techniques to emphasize certain
portions of the picture, one can avoid giving the programmer
so much material that he cannot locate the most relevant data.

The use of high speed displays to aid higher level language
programmers 1is the intent of GRAPE. GRAPE is a programming

system for the GRaphical Analysis of Program Execution. It permits
the programmer to see his higher level language program execute,
and it permits him to interact with that program as it is
executing. In turn, it operates under whatever executive system

is used on the computer. The GRAPE system is described in

Section II of this paper, and a particular implementation of

GRAPE is described in Section III.

If interaction between user and programmer is to occur,
there must be an input device. For certain aspects of the GRAPE
system characters must be input to the computer, and the device
best suited to this is the graphical input tablet (ref. 3). A
powerful computer is needed to handle graphical devices such as
displays and tablets, but interactive use of this equipment means
that the user may spend only a small fraction of his time exercis-
ing the computer and the bulk of his time thinking. The desire
to bring users "on line" with equipment which they will use for
only a few seconds each minute often leads to time sharing.
Therefore, the executive system under which GRAPE is running may
be a time sharing system. Section IV presents a general approach
to the problems of time sharing high speed graphical devices such
as two dimensional tablets and three dimensional Lincoln Wands
(ref. 4).

Section V is primarily concerned with the changes that must
be made in GRAPE when it is used with hardware configurations
that range from three dimensional displays to remote storage
displays.

II. GRAPE THEORY
2.1 Basics

2.1.1 Unifying Concepts.- Section I described the inability
of present language translator and computer executive systems to
provide a superior capability for an individual, either computer
expert or novice, to correct or modify a higher level language¥*
computer program. GRAPE provides that capability. It is a
system for displaying, on a computer driven display, information
about a program while that program is being executed by the
computer. This information is used to assist in debugging the
program if it has errors, to assist in understanding the program
if modifications are being attempted, and to assist in under-
standing programming if one is learning to program. The program
being analyzed is written in a higher level language, and the
nature of the displayed information is such as to make much
easier the normally time consuming and tedious task of under-
standing what a given program actually does.

*FORTRAN, ALGOL, MAD, PL/I are typical higher level languages.

The basic idea of GRAPE is that the computer executes and
displays source program HLL (higher level language) statements
at a rate suited to the observer and shows on the display the
result of that execution in the language of the source program.
The observer can at any time halt execution, make changes to the
source program, and restart execution. This, in itself, is useful
for certain functions such as teaching programming. Yet, there
are several other concepts which are also vital in GRAPE that
make it an effective programming tool for both novice and expert.

First, all communication between man and computer in GRAPE
is in the language of the program, a higher level language. In
addition, the unit of information from the computer is the same
unit which the man chose to use,; a single HLL statement.

- Second, continuous feedback is given to the man. Extensive
feedback can only be given because of the high data rates which
the computer driven display can produce and the human eye/brain
can accept and interpret. The precise form of this feedback is
chosen to maximize information content while minimizing the mental
load on the man.

Third is the idea of context. A particular piece of informa-
tion will be meaningful to the man only if he has the framework
for the information being presented. The high data rates of the
display permit it to present the context surrounding a particular
HLL program statement. Further, the new piece of information will
be emphasized over its surrounding context.

Thus the display must show at one time at least as much of
the source program being analyzed as a man would normally look
at during a desk simulation of the program operation. One is
supposed to feel that the entire program is essentially in front
of him, and if the window through which one is looking is tco
small this feeling is lost. There is a critical size for this
window below which a major purpose of GRAPE is not served, and
therefore one may have to tolerate some display flicker in order
to achieve this size. This critical size is influenced by
several factors. A single line of code in a language such as
BCPL (ref. 5) is usually more complex than a single line of
FORTRAN code, and fewer lines of code may be needed to reach the
critical size. The increased sharing of computer programs among
users is leading to the shortening of program units and the
writing of subprograms to perform a program function even if that
function is invoked only once. Such subprograms are easier to
debug, to change, to share, and to understand. Display oriented
program analysis may both benefit from and contribute to that
trend. Investigation of numerous HLL programs indicates that for
long programs twenty-five lines of displayed code is a minimum
and forty is more desirable. Of course the text must be in

large enough characters to be easily readable. 1In the descrip-
tion of GRAPE, techniques for increasing the size of the useful
window will be shown.

Fourth, since the speed of execution of the HLL program
must be suited to the observer, there must be some speed control
which provides for a wide range of execution speeds so that one
can easily adjust or halt program execution. This control should
have only one degree of freedom, should move continuously, should
be stable when set to a value, and should be trivial to operate.
It should not be something which falls down if one lets go of it,
even if the speed is not thereby affected.

Fifth, beside the speed control flexibility, there must be
other execution capabilities. One must be able to manipulate the
execution of the HLL program so that all the information one
might want from this program is readily available.

Sixth, one must have an editing facility which is sufficiently
good that minor editing is not a major chore. It is character
recognition software which recognizes graphical tablet input as
being specific letters that permits such editing.

Seventh, the system must be easy to learn and natural to
use. Visual output as provided by a computer driven refresh
display and pencil-and-paper input as provided by a graphical
input tablet offer far more capability in this direction than
other computer peripherals.

Because a display can present so much data in a fraction of
a second, there is no need to have the user learn abbreviations
for everything. Both novice and expert can let the system supply
him with complete information which will disappear as soon as he
no longer needs it.

The number of separate GRAPE functions has been kept to a
minimum. Several of these functions are taken from previously
learned human activities, and all functions have immediate feed-
back and non-destructive effects. Therefore GRAPE is self-
instructing to the extent that one learns about it by using it.
The user's manual for GRAPE is one page long. There is almost
nothing that need be memorized by the user in order to use the
system. '

Using GRAPE, the programmer is dealing directly with his
source language program. His hands and eyes are on his program.
It is his program that is executing, not GRAPE, and not the
binary result of a compilation. He is not talking about his
program to an intermediary operating system, and he is not trying
to glean information about events that have already happened.

2.1.2 Hardware.- The computer peripheral hardware for GRAPE
consists of a refresh display and a graphical input tablet. A
picture of the hardware setup is given in Figure 1.* The face
of the display should be as large as possible, since the charac-
ters must be large enough to be easily readable and there should
be as many lines of text as possible on the screen. The display
should be powerful enough to show several hundred characters
without serious flicker. The graphical input tablet need not be
more powerful than the weakest of the currently available ones.
A twelve inch square writing surface and a five millisecond
interrupt rate is sufficient. No special purpose computer
hardware is necessary for the operation of GRAPE.

The graphical input tablet is the sole input medium, and
the tablet stylus is used to control the source program execution
speed, to point to messages on the display, and to edit source
program code. To control the speed the stylus is supported
vertically on a low mount which runs about eight inches along
the closer left side of the face of the tablet, as in Figure 2.
Sliding the stylus forward and backward changes the speed. No
information about the speed is displayed on the screen. The
stylus rests loosely in the ring in Figure 3. Although the
stylus can be lifted from the slide at any time, the other input
actions can only be performed after the stylus has been moved to
the STOP end of the scale. Moving the speed control to STOP
halts all GRAPE action and so the speed control serves as a ready
"panic button." In fact, the entire design of the speed control
is meant to provide security to the user.

A graphical tablet stylus has a switch in its penpoint, and
a slight pressure on the stylus will serve to trigger this
switch. One prints characters on the tablet by pressing on the
stylus and drawing the character. Stylus pressure is also used
as part of the speed control scheme.

To permit writing on the tablet, the speed lever mount must
be on the left side of the tablet for right-handed people and
on the right side for left-handed people.

As will be seen in Section V, GRAPE can also be used with
other hardware configurations. The source program execution and
the execution functions are not seriously affected if a keyboard
and a light pen are substituted for the graphical input tablet,

*A rear projected transparent tablet would be more appropriate
although tablet users seem to have little trouble adjusting to
the situation of writing on the tablet and seeing the "ink" on
the display.

<«—DISPLAY

- / TABLET

Figure 1l.- Hardware Setup

Ne

SPEED
CONTROL

10

Figure 2.- Tablet

STOP

FAST

/END

SLOW

/ END

Figure 3.~ Speed Control

although editing becomes less natural. The light pen can be
removed with a loss primarily in the naturalness of the speed
control. If a low speed storage display is substituted for the
refresh display, some reworking of the display techniques is
necessary, but GRAPE can still be used for effective program
analysis.

2.1.3 Display Setup.- The setup of the information which
is on the display during operation of GRAPE is in Figure 4. I
have taken FORTRAN (ref. 6) as a typical HLL throucghout the
description of GRAPE because it is undoubtedly the most commonly
used HLL. The bulk of the screen is taken up with about forty
lines of the programmer‘s HLL program. Just to the left of the
code and to the right of the statement labels; one character width
of space is left for entering and displaying certain special
symbols which affect how program execution will take place. On
the left of the screen beside each displayed line of code is a
line number. At the bottom of the screen is space for the
displaying of HLL program variables. At the top of the screen
messages are displayed appropriate to whatever is presently
occurring. For example, when the HLL program is being executed
the only message displayed is "GO". A typical display is shown
in Figure 5. '

2.2 Source Program Execution

2.2.1 Introduction and Example.- We now look at the informa-
tion that is displayed as the user HLL source program is executing.
During execution, the only message displayed at the top of the
screen is GO. As long as that is the only message, the user is
sure that his program is operating. At the bottom of the screen,
information requested by the user may be displayed, as will be
described in Section 2.3. The source program code fills the rest
of the screen. The entire screen except for the single source
program statement which is presently being executed is displayed
at a uniform brightness. That single statement, including its
line number, is displayed more brightly. What in fact is displayed
brightly is code which is desi¢ned to indicate the result of
each source statement, but which has as few symbols different
from the original code as possible, and which requires as little
human eye movement as possible. This technique places the smallest
possible burden of interpretation on the user. Therefore, for
example, brightening is used rather than cursors. Whenever it can
be done, brightening is the sole change in the source code. For
example, if during source program execution the statement

GO TO 140

is reached, then for the length of time which GRAPE is using to
execute each source statement that line of code will appear as

GO TC 140

11

12

GO

41
42
53
54
55
56

GO
30 SUBROUTINE DELETE

31 C [1SPECIFICATIONS

36 DUMMY = LINE1

37 130 DUMMY = POINT (DUMMY)

38 IF (VIZ(DUMMY).EQ.3) GO TO 130
39 IF (VIZ (DUMMY).GE.4) CALL ERROR
40 VIZ (LINEL) = 3

41 CALL REGEN (0)

42 RETURN

43 END

LINE1l = 184
\—

Figure 5.~ Typical Display

2.2.2 Non-executable Statements.- GRAPE spends the same
amount of time at a non-executable statement that it does at any
other statement. One reason for doing this is that if non-
executable statements were performed faster, the flow on the
screen would not be as smooth and would be harder to follow. A
more important reason is that the most frequent non-executable
statements which are imbedded in executable code and reached
many times during program execution are the comment statement and
the CONTINUE. A user is as likely to be interested in looking at
imbedded comment statements or a CONTINUE statement as he is at
any other statement.

Non-executable statements are displayed by brightening (the
line number and) the code which indicates their functions. Typi~-
cal Fortran statements as they would be displayed during execution
are

c COMPUTE THE ANGULAR ACCELERATION
DIMENSION ROWSUM (8) , COLSUM(15), HEAT (8,15)

INTEGER HEIGHT, WEIGHT
and other specification statements

40 FORMAT (I3, 2F6.1)

120 CONTINUE
SUBROUTINE SETUP (INIT, MAXMUM, MINMUM)

FUNCTION cuBIC (A,B,C,D)

ALGOL (ref. 7) statements such as ARRAY or BEGIN are treated
the same way.

2.2.3 Expressions.- Before showing how other statements are
displayed, we must look at how the evaluation of expressions is
displayed. The evaluation of expressions takes more than one-
execution cycle. When execution of an expression begins, all
code on the screen physically below the statement containing the
expression drops down one line, and the temporary results of the
execution are displayed on that line just below the expression.
The general rule for evaluation of expressions is that one level
of operations is executed and displayed in each execution cycle.
As a first example we will use the arithmetic expression to the
right of the equal sign in the arithmetic statement

I =370+ K
Execution of the above expression takes two execution cycles and

happens as follows (if J is 7 and K is 4). The code on the dis-
play screen

14

M =

becomes

M =

J + K

7 + 4

I+ W

and then becomes

W= 2
I =J+ K
= 11
M=1I+W
The following example, with subscripted variables, takes four
steps. Let K = 6, INT(13) = 8, INT(17) = -2.
The code
I = INT(K+7) INT (K+11)
becomes
I = INT(K+7) INT (K+11)
= INT (6+7) INT (6+11)
which becomes
I = INT(K+7) INT (K+11)
= INT(13) INT(17)
then
I = INT(K+7) INT (K+11)

8

(-2)

and then

H
i

INT (K+7) + INT (K+11)
= 6

In more complicated situations involving imbedded expressions,
functions, and subscripts, the rule still holds that evaluation
proceeds one level at a time. 1In the following example, only
the steps in the evaluation are shown. J = 4; SQRT is a library
function; X is a subscripted variable; K = 7; Xg = 25; X5 = 3.

The code I =J % (SQRT(X(K-1)) + X(K-2))
starts as = 4 x (SQRT(X(7-1)) + X(7-2))
becomes = 4 % (SQRT(X(6)) + X(5))
then = 4 % (SQRT(25) + 3)
then =4 5 (5 + 3)
then = 4 5 (8)
and finally = 32

The execution and display of a logical expression follows
the same pattern as an arithmetic expression. Logical operators
are treated as shown in the following example. LV1 and LV2 are
logical variables.

The code
IF (LV1 .AND. LV2) GO TO 30
may become
IF (LV1 .AND. LV2) GO TO 30
(t .AND. £)

which becomes

IF (LV1l .AND. LV2) GO TO 30

(£)

16

Relational operators are treated similarly.
The code
IF (I .EQ. J) GO TO 30
may become
IF (I .EQ. J) GO TO 30
(7 .EQ. 3)
which becomes
IF (I .EQ. J) GO TO 30
(¢)
One final exémple will demonstrate that a logical expression
containing both kinds of operators and containing arithmetic
expressions is no more complicated, only- longer. Again just

the changes from step to step are shown. I =4, J =9, K= 12,

The code IF (I+J .GT. K .AND. I+J .LT. K+5) GO TO 30

starts as (4+9 .GT. 12 .AND. 4+9 .LT. 12+5)
becomes (13 .GT. 12 .AND. 13 .LT. 17)
then (t «AND. t)
finally { t)

This expression took four steps to evaluate. If one were
beset by an expression which took ten or twenty steps to evaluate,
which was inside a program loop, and which was guaranteed to be
correct, one could eliminate the tedious displayed evaluation in
any of several ways. Using the condense feature described in Sec-
tion 2.3, one could set it to indicate only the results of the
evaluation. Also using the condense feature one could remove the
statement from the screen entirely. Finally, using the speed
control, one could pass through the steps of the evaluation as
fast as desirable,

2.2.4 Arithmetic Statements.- Three things must be added to
the previous description of arithmetic expressions in order to
evaluate arithmetic statements. While the expression part of an
arithmetic statement (the part to the right of the equal sign)
is being evaluated to an arithmetic value, the part to the left
is being evaluated to an address. One example of the full
evaluation of an arithmetic statement will suffice to demonstrate
this. I =6, Jd =17, Ag 7 = 10.

17

The code
A(I+3,J) = A(I+3,J) + J + 1
starts as

A(I+3,J) = A(I+3,J) + J + 1

A(6+3,7) = A(6+3,7) + 7 + 1
becomes

A(I+3,J) = A(I+3,J) + J + 1

A(9 ,7) =A(9 ,7) + 7+ 1
then

A(I+3,J) = A(I+3,J) + J + 1

A(9 ,7) = 10 + 7 + 1
finally

A(I+3,J)y = A(I+3,J) + J + 1
A(9 ,7) = 18

If the variable to the left of the equal sign is an externally
defined variable, that is, if it is in COMMON in FORTRAN or global
in ALGOL, it is displayed brightly during the statement execution.

On the matter of precision of arithmetic values during dis-
played execution, GRAPE only gives two significant digits of
accuracy to variables whose values are being displayed. 1In
general, greater precision than one percent is not required
during the moving evaluations and six or seven characters for
each displayed value would make the evaluation hard to follow.
There are other ways in GRAPE to display variables to complete
accuracy as will be described in Section 2.3. If the value of
a variable is between -99 and +99, it is displayed as a two digit
integer. If the value is outside this range it is displayed as
two significant digits, an upward arrow to indicate exponentiation,
and the appropriate power of 10. For example, 5321 is displayed
as 53402,

Alignment of successive steps during evaluation of both
arithmetic and logical statements must be considered. Whenever
possible, in the displayed code parentheses and operators
(arithmetic, relational, logical) appear directly under their

18

counterparts in the original code. Values replacing variables
appear directly under the variables. Values replacing sub-
expressions appear directly under the first operator in the sub-
expression being replaced, as in the expressions evaluated earlier.
When necessary, as when a variable such as X is replaced by a value
such as 53t02, some or all of the expression will have to be

moved horizontally to the right. As soon as possible in succes-
sive evaluation steps, the alignment will revert to the original.

2.2.5 Control Statements.- The display of these statements
indicates the results of transfers or conditional transfers.
Examples will be the clearest way to demonstrate this. The first
example below is clear. 1In the second example let J equal 3.

In the third example let M be statement 22. In the fourth
example e is an arithmetic expression which has been evaluated
by the methods above to be exactly zero. The intensification of
the appropriate statement number is the final step in the dis-
played execution of the arithmetic IF statement. An ALGOL switch
statement would also have the evaluation of an expression pre-
ceding the indication of the transfer.

Examples: G@ Tg 37
Gg T¢ (18, 46, 1, 46), J
G@ T@ M, (43, 9, 22)
IF (e) 19, 14, 19

More than any other group of statements the control state-
ments show, even without the use of a display, how the operation
of the source program is clearly defined within the source code
itself.

The ASSIGN statement is included here because of its associ-
ation with control statements. It also is simply to display.

ASSIGN 30 T@ N

2.2.6 Logical Statements.- In a logical IF statement,
IF (e) S, the expression is evaluated as described in Section
2.2.3 above. If the result is true the next execution cycle
is the first cycle appropriate for statement S. If the result
is false the next cycle is the first cycle for the statement
immediately following the logical IF.

Take the code

110 C TEST F@R C@MPLETI@N
111 IF (INDEX.EQ.J) G@ T¢@ 40
112 G T@ 50

19

If INDEX = 6, J = 7 this entire block, including line numbers,
executes as

110 C TEST F@R C@MPLETI@N
111 IF (INDEX.EQ.J) G@ T@ 40
112 G@ T@ 50
Then
110 C TEST F@R C@MPLETI@N
P IF (INDEX.EQ.J) G@ T@ 40
(6 .EQ.7)
112 G@ T@ 50
Then
110 C TEST F@R C@PMPLETI@N
(RR IF (INDEX.EQ.J) G@ T@ 40
(f)
112 Gg T@ 50
Finally
110 C TEST F@R C@MPLETI@N
111 IF (INDEX.EQ.J) G@ T@ 40
112 Gg TP 50

If INDEX = 7, J = 7 the block executes as
110 ¢ TEST F@R C@MPLETI@N
111 IF (INDEX.EQ.J) G@ T@g 40
112 G@ Tg 50

Then
110 C TEST F@R C@MPLETI@N
Il IF (INDEX.EQ.J) G@ T@ 40

{7 .EQ.7}

112 G@g T@ 50

20

Then

110 C TEST F@R C@MPLETI@N

1 IF (INDEX.EQ.J) G@ T@ 40

(t)

112 Gg T@ 50
Finally

110 C TEST FPR CZMPLETI@ZN

i IF (INDEX.EQ.J) G@ T@ 40

112 Gg Tg 50

2.2.7 Iterative Loops.- Automatic loops also have simple

display versions. For purposes of display all three steps
inherent in loops (initialize, increment/modify, test) take place
at the statement which defines the loop, even though compilers

often put the latter two at the end of the loop. This is the
natural way to think of loop execution.

As long as source program execution is within a DO loop,
or either type of ALGOL FOR loop, the value of the index variable
remains displayed beside the loop statement. Thus

DG 30 I = 1,40,1 14

This statement is executed each time through the loop by incre-
menting the index variable, I. The final execution of this
statement sets I to 41, and the next statement executed is the

one after statement 30. Checking to see if a transfer statement
has taken execution outside the range of a program loop, so that
the value of the loop can be removed from the screen, is something
which compilers rarely do, but which is valuable within the slow
compilation and execution scheme used by GRAPE.

2.2.8 Subroutine Calls.- The execution of a call to a sub-
routine takes two display cycles. The actual execution of the
subroutine takes place between the two cycles. During the first
cycle the code physically below the subroutine call drops down
one line, as in evaluation of an expression, and on the display
appears the present values of the variables being used as inputs
to the subroutine. Thus, if the first, second and third arguments
in the following example were inputs to subroutine NEWTON, the
third being a logical variable, the code

21

CALL NEWT@N (QLDVAL, 5.3, L@GGVAR, NEWVAL, ITERNY)
would appear during the first execution cycle as

CALL NEWT@N (@QLDVAL, 5.3, L@GVAR, NEWVAL, ITERN@)

TO NEWT@N (2l , 5 , i , NEWVAL, ITERNGZ)

During the second execution cycle, after the execution of the
entire subroutine at full computer speed, the code on the display
drops down one more line and the results of the subroutine
execution are displayed on the next line.

CALL NEWT@N (@LDVAL, 5.3, L@GVAR, NEWVAL, ITERN@)
TO NEWT@N (2! , 5 , t , NEWVAL, ITERN@)
FROM NEWT@N (@LDVAL, 5.3, L@GVAR, 8l , 30)

The display of both TO and FROM lines simultaneously permit the
user to see quickly if any variables have been used for both
input to and output from the subroutine or if any variables have
been used for neither. These situations often, though not always,
indicate incorrect subroutine usage.

Actually, matters are not quite so simple with subroutine
calls. First, only single valued variables will have their
values displayed. For multi-valued variables such as entire
FORTRAN arrays the name of the array is intensified in the TO
and/or FROM lines. The same is done if the argument is a function
name. As with the precision of displayed variables, the capabil-
ity to display entire arrays is discussed in later sections.
Second, if one of the arguments is an expression, the expression
is evaluated in the manner of 2.2.3 above before the subroutine
is called. Third, a compiler cannot tell which arguments
in a call are inputs to the subroutine.* The best way to handle
this is to permit the user to specify to GRAPE which arguments
in each subroutine are inputs. This can be done in the statement
immediately following the SUBROUTINE statement, and it can be
done in a comment statement so that the normal HLL compiler will
still accept the source program. However since this, or any
other such scheme, involves additions to the HLL code or to some
"system cards," there is a default condition. With no information
to the contrary, GRAPE displays all arguments as input arguments.

*This is true for FORTRAN but not true for some other higher
level languages.

22

Fourth, arguments returned from subroutines pose a similar
problem. If the subroutine were being executed interpretively
GRAPE could keep track during execution of the subroutine of
which arguments were modified. 1If, however, the subroutine is
to run at full machine speed, and if, as is often true, the arqgu-
ment transfer vector is used as a set of indirect addresses,
GRAPE has no way of knowing which arguments are returned. The
solutions offered for the input case can be used here, and in
the default case all arguments are displayed as outputs. All
and only the output arguments should have changed in value be-
tween the two cycles.

The above implies that the code for subroutines does not
normally appear on the screen. How to bring the subroutine onto
the screen is discussed in 2.3. Display of the SUBROUTINE
statement was given in 2.2.2 above. The RETURN statement is
displayed by intensifying the whole word

RETURN

2.2.9 Input/Output.- Most input and output presents no
special problems to GRAPE. Execution of an input or output
statement takes one execution cycle, unless subscript evaluation
or other expression evaluation occurs first. During the cycle
devoted to the input/output itself, code below the I/0 statement
drops down one line and the values of any single valued variables
which are being read or written are displayed. The device type
is also displayed.

The code

WRITE (N,20) Il, I2, (MAT(K), K = 1,10)
might become

WRITE (N,20) Il, I2, (MAT(K), K = 1,10)

WRITE (1,20) 13, &, (MAT(K), K= 1,10)

At the same time, the input or output actually occurs. The
display of output arrays can be requested as in 2.3,

If the I/0 device is fast enough, the data transfer may take
place in less than one GRAPE execution cycle. In that case there
is no delay in program execution. However, if the input or out-
put takes longer, e.g., if the input is from a keyboard or a
teletype, GRAPE waits for completion of the I/0. The values of
variables on the intensified line of an input statement cannot,
of course, be filled in until the input has taken place. No
values are displayed for binary input/output, as opposed to
character I/0.

23

The one form of input/output which presents problems is
display output, since the display screen is already filled with
GRAPE information. (Graphical tablet input does not cause the
same difficulties since GRAPE does not use the tablet during the
execution of a source program input statement, except as described
in 2.2.10.) The frequency of occurrence of display output
is increased by the fact that when one is analyzing a program one
might well want to do all output on the display, rather than on
a relatively slow teletype or on a non-readable magnetic tape.
This situation is discussed and solutions presented in 2.5,

2.2.10 ©Speed Control and Related Statements.- The speed
control hardware has already been described. By sliding the
lever back and forth the user adjusts the speed, in execution
cycles per second, at which his source program operates. Most
types of statements take one execution cycle to execute. Others,
such as subroutine calls, take two cycles to execute. The
existence of either arithmetic or logical expressions within
statements increases the number of execution cycles used to dis-
play the statement in execution. Experimentation has shown that
the slowest speed which is useful for continuous execution is
one cycle every four seconds. Speeds slower than this can be
induced by single cycle execution. When the lever is at the near
end of the slide (Figure 3) execution stops. Pressing down on
the lever while it is in that position, thus tripping the stylus
switch, causes the execution of one cycle. This action can be
repeated as often as desired. Moving the lever away from the
STOP position restarts continuous execution.

The fastest speed which now appears useful if one is watching
the execution is forty times as fast, ten cycles per second, and
occurs when the lever is at the end of the slide away from STOP.
That speed is too fast for the user to see individual statements
execute, but one can see the area of the source program that is
being executed; and one can see changes in information being dis-
played at the bottom of the screen. Speeds faster than this can
be induced by pressing down on the lever while it is at the fast
end of the scale. This completely eliminates delay between
execution cycles, although the results of each statement are
still displayed on the screen. Nothing intelligible can be seen
at this speed; one would use it only if he knew there was a
statement in the program such as teletype input or a breakpoint
which would cause execution to stop. Even with no GRAPE delay,
as long as each source statement is being executed for display,
execution will be two orders of magnitude slower than if the
statement had been compiled by a "real” compiler. For this and
other reasons there is a way to make sections of the source pro-
gram run even faster. It is described in 2.3.

Intermediate positions of the speed lever cause intermediate

execution speeds. None of the speeds except STOP are marked on
the speed control.

24

As implied above there are source program statements other
than input which cause execution to cease.* When execution
reaches one of these statements, continuous source program
execution stops regardless of the position of the speed lever,
and the message at the top of the screen is changed

from GO to STOP

The statement which caused the halt remains intensified. The
user's next actions will depend on the nature of the statement.

If the statement is a temporary halt, the user can continue
with execution by pulling the speed control to the STOP position
and then pushing it away. Alternatively he could move it to
STOP and then perform the functions described in the rest of
Section 2. The FORTRAN PAUSE statement is intensified as

PAUSE

If the statement is a permanent halt, all the user can do
is move the speed control to STOP and perform some of the GRAPE
functions described below. The two FORTRAN statements which are
permanent halts are also intensified by having the entire state-
ment be brightened. They are

STOP AND END

2.3 Execution Functions

2.3.1 Changes with Execution Stopped. - No editing or
program modification can be done while the HLL program is in
the process of executing. However, when the speed control is
pulled to STOP, changes to the program can be made. In 2.3
changes are described that affect the manner in which the
HLL program is executed or the manner in which it is display-
ed. Changes to the HLL code itself will be described in
2.4, Some of the functions introduced are familiar ones,
such as breakpoints in the program, but even there the
method of invoking the function will be new.

Some of these functions take their effect while execution is
stopped. When execution is started again they leave no trace.
The first of these is the null function: simply pushing the
speed control away from STOP. When this is done execution of the
HLL program continues from exactly where it had stopped. Since
the slow end of the speed control is nearest STOP, no great

*These statements were used frequently on user operated computers.
With the advent of batch processing and time-sharing they became
less useful. GRAPE returns the good parts of user operated com-
puters, including these statements.

25

changes suddenly happen when the control is moved. Therefore.
one can easily execute just a statement or two, then stop and
think. By pressing down the stylus, and causing single cycle
execution, one has even finer control over execution. This is

a good time to note that the execution of a statement does not
actually occur until the statement has finished its display
cycles. This is clearly true for transfer statements, but it is
also true that as long as an arithmetic statement is still being
displayed, even if the speed is at STOP, the value of the left
side variable has not yet been changed. The exceptions to this
are the subroutine call, which is executed between the TO and
FROM cycles, and input/output statements, which are executed
while they are displayed.

It may be that one wishes to start execution at some state-
ment in the HLL program other than where execution stopped. One
reason might be that the section of code about to be executed
cannot be executed properly; perhaps it has not been completely
written, or perhaps it requires some input which is not yet ready.
Another reason is that as a result of watching the execution, one
has stopped execution, has made some changes to the code, and now
wishes to rerun the few statements which were changed. The second
execution function permits this. To start execution at a
particular statement on the display face, one draws an arrow to
that statement in the column reserved for execution functions
(Figure 4). Execution immediately begins at that new statement,
but since the speed is at STOP, only the first execution cycle
will take place. 1If, while execution is stopped, one draws the
arrow indicated below:

118 IF (I.NE.3) GO TO 20
119 +~J = 16 + I

120 K=20

121 GO TO 45

122 20 CONTINUE

then execution will begin at line 119 and the display will read

118 IF (I.NE.3) GO TO 20
19 J =16 + I

J =16 + 3
120 K=20

26

121 GO TO 45
122 20 CONTINUE

Moving the speed control away from STOP will continue with the
execution at line 119. Since all statements take at least one
cycle to execute, no harm is done by pointing at the wrong line.
(Remember that the graphical input stylus which is being used
for writing is also the speed control lever).*

There is no need for GRAPE to ever display the arrow. The
instant that GRAPE knows an arrow was drawn, the new statement
will be properly intensified. While the arrow is being drawn,
-the computer operating system must provide the necessary feedback

to the user to help him draw his characters properly (see
Section IV).

Whenever the speed is STOP, not only does the displayed
message, GO, change to STOP, but other messages appear at the
top of the screen as in Figure 6. These messages are all func-
tion buttons; touching any of them with the tablet stylus will
cause an appropriate activity to occur. The full set of messages
for this situation can also be seen in the User's Manual
(2.6) next to "speed set to STOP."

The third execution function which affects the HLL program
only while execution is stopped is ROLL. Only forty or so lines
of program code are visible on the screen at any one time. For
longer programs there must be a way to get specific sections of
the source program on the screen so that one can edit them or can
perform execution functions such as "start here" on them. The
message +ROLLY permits this. Pressing the down arrow with the
stylus rolls the program past the display, displaying code closer
to the end of the program. As long as the arrow is pressed, the
program keeps rolling, except that once the end of the program is
on the screen the down arrow has no effect.** Pressing the up
arrow has the opposite effect; the code rolls towards the be-
ginning of the program.*** During source program execution this

*The choice of written symbols for this and the other execution
functions is somewhat arbitrary, since these functions are new,
whereas the symbols for the editing functions are the standard
typographical ones. An arrow for "start here" seems appropriate.

**Tf ROLL is difficult to understand, one can think of the credits
rolling across the screen after a television show.

***Which way an arrow moves a picture depends on whether one
thinks of the screen as moving over the picture, or of the pic-
ture as moving under the screen. In the present situation, the
former seems more satisfying.

27

28

(
STOP RESTART SAVE TRASH UNUSED +ROLLY

Figure 6.- Display Messages When The Speed Is At STOP

\

is handled automatically. When control transfers to a program
statement which is not presently on the screen, the window moves
to the new part of the program making that statement the third
line on the screen.

The rate of the roll depends on where along the stem the
arrow is touched. The end at the arrow tip is the fast end; the
program will roll at about forty lines per second. This high
speed is necessary so that one can get to the other end of a
long program. Touching the end away from the tip rolls the pro-
gram at about one line per second. Intermediate spots along the
stem cause intermediate rates. As with the other execution
functions, no harm is done if the function is used incorrectly,
and so no special instruction in the use of ROLL is necessary.
The other arrow can be used to return the earlier picture. Note,
incidentally, that if the speed control is pushed away from STOP
after a long roll has taken place, execution still begins where
it had halted, and the correct page of display code is brought
onto the display.

One other message, the fourth execution function, affects
what section of code is displayed on the screen., Touching RESTART
puts the first forty lines of the program on the screen. It
also resets all program variables to their initial values, usually
"undefined". This is the only function in GRAPE which has an
immediate irreversible effect. To prevent accidental disaster,
when RESTART is pressed the screen goes blank except for the
guestion:

DO YOU REALLY WANT TO RESTART

vEs [] No []

Touching the NO box returns the previous picture.

A button with a different function is the SAVE button.
This button terminates GRAPE operations, saves the present
version of the HLL program in the computer file system, and
returns control to the computer operating system. SAVE calls
the operating system in such a way that the present status of
the machine is not destroyed and GRAPE can be restarted in
exactly the situation in which it was terminated. If GRAPE plus
appropriate input/output operating routines are the sole programs
in the computer and there is no operating system, control re-
mains in GRAPE after the source program is saved.

The final two function buttons displayed when the speed con-

trol is set to STOP are used in conjunction with editing. Details
of their use will be described in the section on editing.

29

2.3.2 Changes During Execution.- Now several functions
which affect the program display as execution is taking place
will be examined. The first of these is the break line. Drawing
a hook over a line number, thus

|l40 IF (I+3.GT.J*7) TBAR=TBAR+1l

will cause execution to stop, whenever that statement is about

to be executed. The break line and the line number are brightened.
The GO at the top of the screen changes to STOP. In principle,
this is similar to inserting a temporary halt statement, such as
FORTRAN PAUSE, before the given statement, but the break lines

are easier to see and eliminate than are the PAUSE's. To con-
tinue execution after a stop because of a break line, one pulls

the speed lever to STOP and then pushes it away. Any number of
break lines can be inserted in a program. Two consecutive
execution cycles in a program are shown below.

118 GO TO 40

119 I=1IH+1

120 40 M = I * 2 + SQRT (J)
and

118 GO TO 40

119 I I+1

{120 40 M =1I * 2 + SQRT (J)

The next execution function which can be performed while
the speed is at STOP is the setting and displaying of HLL program
variables at the bottom of the screen, (Figure 4). If WEIGHT is
a single valued program variable and one writes
WEIGHT = 65.25

at the bottom of the screen, then WEIGHT is set to that value.
If one writes

HEIGHT (12,3) =

without supplying a value, then GRAPE fills in the present value
of HEIGHT12 5 to its full computer precision.
7

HEIGHT (12,3) = .32750*t-04

30

One may wonder how the system knows that an individual has stopped
writing at an equal sign and is therefore requesting the value of
a variable rather than supplying one. While teletype input often
uses a special character, such as carriage-return, to indicate

the end of input, graphical input tablet character recognition
typically uses timing information. A significant delay indicates
that input is complete. But nothing happens to the user who in-
advertently delays before writing his new value. As will be seen
in 2.4, overwriting is the standard way of changing information
which is on the screen.

With regard to the example above, GRAPE could understand the
mathematical notation for subscripts, but it is wiser to have the
variable look just as it does in the programming language, and
subscript notation is not used in FORTRAN. All the current HLL
have forced a linearity on the basic two dimensionality of mathe-
matical statements. ALGOL (and PL/I) have the additional inherent
two dimensionality of statements containing strings of ELSE
clauses. "If Xj is true do Y3, ELSE if X3 is true do Y3, ELSE..."
GRAPE is perfectly well suited for a statement oriented two
dimensional higher level language, and so is the graphical input
tablet, as Andersen (ref. 8) has shown.

After program execution is continued these variables remain
displayed at the bottom of the screen and their values are changed
on the screen as execution of the program changes them. If a
GRAPE user were looking for the place in a program where the value
of a variable changed from a small integer to a large one, he
could display the variable on the screen and then run the program
at a high speed until the variable changed value. Displaying
and setting the values of entire arrays, rather than variables
with a single value, involves the same problems that display
output during execution involves, and it is treated in 2.5.

The final execution function is the ability of the user
to condense source program code. Condensing is used to remove
from the screen code which is no longer interesting. Drawing a
circle around a set of contiguous line numbers reduces all the
encircled lines to a single line on the screen, When lines of
code are condensed, the first line remains on the screen with a
condense square,[], in the special character column.

The code
123 I =14
124 J = 15
125 K = 16

31

126 L =17
127 M = 18

when the user draws

123 I =14
24 J = 15
K = 16
L =17
127 M = 18
becomes
123 I =14

124 g = 15
127 M = 18

Two important purposes are served by condensing. First,
code which the user is not interested in seeing displayed is
removed from the screen, though not from the program, thus in-
creasing the amount of useful information which can be displayed
at one time. Second, the code which is removed from the screen
is executed by the computer at full computer speed, an increase
of up to 10000 percent over even the fastest execution that still
involves changes to the display screen.

During execution the condense square brightens while
execution is taking place in the lines which are not on the screen.
As long as the code which is hidden from the screen is not very
time consuming, there is no perceptible delay from the display
of execution of the line with the condense character to the dis-
play of execution of the next line. In the above example, three
execution cycles would be needed to execute the program with the
condense block. The second cycle would indicate how line 124
was to be executed, but lines 125 and 126 would also be executed
immediately following this cycle.

Suppose that there were a fifty line program in which appeared
the twelve lines of Figure 7. Display of this section of code
takes over 25 percent of the screen's capability of forty lines.
Worse yet, it involves the execution of nearly five thousand
separate statements, some of which take more than one cycle to
display. Even with no delay at all between execution cycles,

32

INTEGER A,B,C
INITIALIZE ALL ARRAYS
DO 20 I = 1,100

A(I) =0

B(I) = 0

C(I)y =0

DO 15 J = 1,10

1.0

li

D(I,J)
E(I,J) = -1.0

CONTINUE

CONTINUE

DO 30 RADIUS = 1,50,2

Figure 7.- Condensing A Program Loop

33

this section of code could take over a minute (100 times as long
as a "normal" 10000 statements per second) to execute and display.

By drawing the indicated circle around the line numbers,
the code is reduced to

14 INTEGER A,B,C
15 C [JINITIALIZE ALL ARRAYS
25 Dg 30 RADIUS = 1, 50, 2

Now the entire executable part of the fifty line program fits on
the display screen, and the whole array initialization takes
place in one execution cycle. Between the single execution cycle
of the comment statement and the single execution cycle of the

DO statement, the arrays are initialized. However, if the code
hidden from view involved a million calculations, then it would
take longer than a brief moment to execute that hidden code.

For the time that the condensed code was operating the computer,
the condense line would be intensified as

15 C [JINITIALIZE ALL ARRAYS

If execution reaches a halt, e.g., a PAUSE statement,
inside the condensed code, the message at the top of the screen
changes from GO to STOP, just as if the statement were displayed.
The user could continue execution, just as if the statement were
displayed, by moving the speed control to STOP and then away
from it. If he did not know why execution had stopped, he could
pull the speed to STOP and then make the hidden code appear by
crossing out the condense square, that is, by "erasing" or
scrubbing over it, as in{b. (Breaklines also are removed by
scrubbing over them.) Because of the variability in execution
time, when an input/output statement executes inside a condensed
block the code below the condense line drops down, the input/
output statement appears, and it is executed visibly.

Statements which transfer control to the middle of a condense

block, e.g., GO TO n where statement n has been condensed, work

as might be expected; the line which is intensified, and brought
onto the screen if it is not already there, is the condense line
at the beginning of the block. As that implies, condense blocks
remain condensed even when the whole section of the program is

off the screen. There can be any number of condense blocks in

a program. Furthermore, condense blocks can include other con-
dense blocks.

34

J = 2
K =3
L =4
M =25

becomes
10 I =1
11 [Jg =2
14 M=25

and

I=1
Og =2
M =25

becomes

10 [dr=1
In this case

10 1 =1
becomes

10 I=1

11 HOg =2

14 M =5

However, if the first line in a new condense block is already
a condense line, only one condense block results.

10 I =1
g

M =25

2

becomes
10 I =1
11 g =2

and if the square is crossed out

10 I =1
11 J = 2
12 K =3
13 L =4
14 M =25
Two final remarks about condensing must be made. Subroutine

calls initially appear as condense lines, and the execution of
subroutines takes place in two cycles as indicated in 2.2.

145 []CALL NEWT@N (@LDVAL, 5.3, L@GVAR, NEWVAL, ITERN@)

If one wishes to see the subroutine execute, one crosses out the
condense square and the subroutine code appears under the call.

The execution of the subroutine occurs in normal GRAPE fashion
between the TO and FROM cycles of the subroutine call. Subroutines
may themselves contain condense blocks, such as other subroutine
calls.,.

Single statements can be condensed by drawing a circle
around the single line number. The effect of condensing a single
statement is that it executes in one cycle, and statements con-
taining complicated expressions may warrant such condensing. If
one condensed the following statement by drawing a circle around
the 160

160 A(K+3,J) = J*(SQRT(X(K-1)) + X(K-2))
the single cycle of execution might appear as

160 Cla(x+3,J)

J* (SQRT (X (K-1)) + X(K-2))
A(10,4) = 32
If only that one line is condensed the next line on the display

screen would have the line number 161, hence the user would know
that the condense block was just a single line.

36

2.4 Editing Functions

2.4.1 Changing Code. - Changing the actual source program code
can be accomplished whenever the speed control is in the STOP position.
GRAPE itself is not an editor. Rather, it is the capabilities of the
graphical input tablet with sufficient supporting software that make
the editing feature of GRAPE so powerful. Editing a page of text with
a tablet is even easier than annotating a page of text with a pencil
for someone else to edit. To change letters or words in a line, one
simply writes over them. To insert letters or words in a line, one draws
a caret and inserts the information. To insert a new line draw a >
between the line numbers where the new line is to go; the code on the
screen separates to allow writing of the new line. It has been noted thaf
breaklines and condense blocks can be removed by crossing them out.
Letters or words can be removed the same way. An entire line can be
deleted by crossing out the line number.* Some examples follow.

If the code looks like this

15 GF TP 20
16 10 I=J+ 2
17 K= 14 + M/2
18 L = 26

and the user crosses out the 17

15 Gg@ T 20
16 10 I=J+ 2
M K= 14 + M/2
18 L = 26

the code becomes

15 G TP 20
16 10 I =0+ 2
17 L = 26

*I have taken these ideas from Project GRAIL at Rand Corporation,
one of the sophisticated users of graphical tablets. They are

the designers of the Rand Tablet, the first commercially available
version of the graphical input tablet.

37

Line 16 could be changed to read 10 I = J+4-M by just writing
the new code on top of the old

It is not necessary to indicate in any way that changes are about to
be made, or indicate which line is to be edited. One simply writes
the changes. If in the above example one wished to add a line between
lines 15 and 16 one would use a >

15 G TF 20
>

16 10 I =J + 2
17 L = 26

The code becomes

15 Gg T@ 20
16

17 10 I =J+ 2
18 L = 26

and one can write whatever code he wants on line 1l6. These features
have all been used by Project GRAIL. They are the common editing
features of A , > ,mw and overwriting. One could get the value of
some function of the program variables by inserting an arithmetic
statement anywhere on the screen, executing it, then deleting it.
Besides the statement itself, all one writes is > ,—5 , coan -

A fifth common technique which is used in GRAPE is moving a line
by drawing an arrow from it to where it should go.

14 A=1
5 D =4
16 B =2
17 c =3
18 E =5

becomes

14 A=1
15 B =2
16 c =3
17 D=4
18 E=25

One can also move a block of lines easily

14 A=1
: D = 4
E =5
B = 2
C =3

The circle condenses the lines, the arrow moves them. One may then
cross out the condense square

14 A=1
15 0B =2
16 D =4
17 E=25

These five functions are all simple and are all common editing
techniques. The thing to realize is that indicating the changes
actually produces the changes.

There are many other features for changing code which should
be found in a good general purpose editor, such as locate-by-context
or change-everywhere. But complex code modification belongs in the
editor, not in GRAPE. See, for example, reference 9 Section AH.3.
The five features above are all that are needed for easy line by line
editing. It is not unreasonable to suppose that, with a good oper-
ating system, the GRAPE user will find it simple to use the available
general purpose editor on his HLL program.

2.4.2 Checking Code. - Before touching on other types of editing,
let us state a point that is probably already clear about line numbers:
they are not permanent. The lines in the main program are numbered in

39

order. Any deletion or addition changes the line numbers which follow.
Line numbers serve two functions in GRAPE. The first is to mark the
lines that are on the display screen. Markings on the left of the
screen provide a convenient place to indicate insertion of a line,
deletion of a line, condensing of lines, particularly since HLL source
statements do not have to be aligned vertically. For this a mark such
as (9 would serve. But actual line numbers can also be used to rough-
ly identify sections of a very long program. One may remember that a
statement is in the vicinity of line 200. However, permanent identifi-
cation of a line number with a particular statement does not provide
additional capability and so the machinery necessary to provide it has
not been included in GRAPE.

We have already seen how the values of single-valued variables
can be displayed at the bottom of the screen. To set the value of a
variable write

VARIAB = 38.6
To display the present value write

VARIAB =

Furthermore, if the speed is STOP, the value of a variable being
displayed can be changed by writing the new value over the old. For

example,
VARIAB = }%

This will reset VARIAB to l1ll. The display of a variable can be removed
from the screen by crossing it out. Similarly, a new variable can be
displayed in place of one already there by writing the new name over
the old.

B = 29.1

The question arises as to how many variables can be displayed
at one time at the bottom of the screen. The answer shows the
flexibility of GRAPE and computer driven displays. When GRAPE be-
gins operating, only one line is reserved for the display of
variables. The rest of the screen, except for the message area
at the top, is available for the HLL program. This line is divided
into fourths as in Figure 8. As long as three or fewer variables
are being displayed, just the one line is taken. As soon as the dis-
play of a fourth variable is requested, the bottom line of the HLL
program disappears from the screen and a second line of four display
locations is added as in Figure 9. After four more displayed
variables, this action is repeated. Adding of display locations for
variables can continue until the HLL program has been completely
eliminated from the screen. Conversely, as displayed variables are
crossed out, display locations disappear and program code reappears.

40

123

124 -

126 ~—— —~———
\A = 1 B =2 cC =3 w
Figure 8. Three Displayed Variables
123
124 ———

125 —————

A=1

‘B =2 c =3 D =4

v

Figure 9.

Four Displayed Variables

41

Certain cross reference information occasionally found in the

output of a good compiler can be used to great benefit in GRAPE.
Writing 120? at the bottom of the screen (while the speed is at STOP)
illuminates the line numbers of all statements that could transfer
control to statement 120 (Figure 1ll). Writing X? illuminates the line
numbers of all statements which contain the variable X (Figure 12).
These references illuminate on all pages of the program, sSo one can
"ROLL through the program to find all the references. Restarting
program execution removes the illumination as does crossing out the
request.

The GRAPE interpretive compiler performs considerable error check-
ing at execution time, such as checking the range of subscripts. This
information is almost always useful when one is trying to analyze a
program, especially a faulty one. The extra time taken is relatively
small in most interpretive compilers and is meaningless in a system
such as GRAPE which has a built in delay. When an error condition is
found, the system displays the diagnostic and halts as shown in Figure
10. Moving the speed lever to and from STOP will cause the compiler to
make a best guess and continue execution, if any guess as to meaning is
possible. The user need not memorize what the best guess will be in
any given situation, since proceeding with the execution will give him
that information. If he does not like the guess he can take appropri-
ate action. 1In condensed statements, which are "incrementally" compiled
and run at full machine speed, no such checking is done, and so there is
natural way to allow the user to write "illegal" statements which will
perform correctly.* He does just what he did to eliminate the tedious
display of an expression evaluation; he condenses the single statement.

Another feature which is useful in program analysis is the
illumination of code which has never been executed. When the speed is
at STOP, one of the messages at the top of the screen is UNUSED.

(Refer to User's Manual.) Touching it with the pen causes the bright-
ening of the line numbers of all statements which have not been
executed since the last time the program was started at the beginning.
Comment statements and certain other non-executable statements are not
illuminated by UNUSED. Performing any other GRAPE function, except
ROLL, removes that illumination. Figure 10 shows part of a program
which was started at line 1 and allowed to run until it halted. Figure
11 shows the results when the speed lever was moved to STOP and 1007
was written at the bottom of the screen. When JSET? was written on top
of the earlier request, Figure 12 resulted. When JSET? was crossed out
and UNUSED was touched, Figure 13 resulted.

*Statements which violate some rule of the language, but which the
user knows will run correctly. Also included would be error state-
ments whose default executions are acceptable.

42

" stop)
1 DIMENSION TABLE (20,30)
2 INDEX = 2
3 100 GO TO (200,300,400), INDEX
4 C
5 200 JSET = 6
6 INDEX = 2
7 CALL FILLER (HEIGHT)
8 GO TO 100
9 C
10 300 INDEX = 3
11 CALL FILLER (WEIGHT)
12 GO TO 100
13 C
14 400 TABLE(JSET,10) = HEIGHT * WEIGHT
JSET IS NOT DEFINED
15 L =3
16 M = 20
S

Figure 10.- Error Message

43

44

STOP RESTART SAVE TRASH UNUSED TROLLL\

1 DIMENSION TABLE (20, 30)

2 INDEX = 2

3 100 GO TO (200,300,400), INDEX

4 C

5 200 JSET = 6

6 INDEX = 2

7 CALL FILLER (HEIGHT)

8 GO TO 100

9 C

10 300 INDEX = 3

11 CALL FILLER (WEIGHT)

12 GO TO 100

13 c

14 400 TABLE(JSET,10) = HEIGHT * WEIGHT
JSET IS NOT DEFINED

15 L =3

16 M = 20

/o007

Figure 1l.~ Statement Cross Reference

(sTop RESTART SAVE TRASH UNUSED 'fROLLJ,\
1 DIMENSION TABLE (20,30)
2 INDEX = 2
3 100 GO TO (200,300,400), INDEX
4 c
5 200 JSET = 6
6 INDEX = 2
7 CALL FILLER (HEIGHT)
8 GO TO 100
9 C
10 300 INDEX = 3
11 CALL FILLER (WEIGHT)
12 GO TO 100
13 C
14 400 TABLE (JSET,10) = HEIGHT * WEIGHT
JSET IS NOT DEFINED
15 L =3
16 M = 20
L JSET ? J
Figure 12.- Variable Cross Reference

45

(" STOP

10
11
12
13

14

15

RESTART SAVE TRASH UNUSED

100

200

300

cC

400

DIMENSION TABLE (20,30)
INDEX = 2

GO TO (200,300,400), INDEX

JSET = 6
INDEX = 2
CALL FILLER (HEIGHT)

GO TO 100

INDEX = 3
CALL FILLER (WEIGHT)

GO TO 100

fROLL }

TABLE (JSET,10) = HEIGHT * WEIGHT

JSET IS NOT DEFINED

L =3

M

20

46

Figure 13. Unused Code

The final message displayed at the top of the screen when
execution is halted is used for the last editing feature. Users are
bound to make mistakes when they edit code. They will delete the
wrong line or will make a change and only later realize the change
should not have been made. The operating system under which GRAPE
runs should provide facilities for hard copy listing of files. Since
SAVE does not modify the running HLL program, one could SAVE, create
the listing, and resume GRAPE operations. However, GRAPE has an
easier feature to permit recovery from an incorrect correction. Tele-
type users have the teletype paper to indicate the changes that have
been made. Likewise, GRAPE has a first-in, first-out TRASH file in
which is stored the last one or two hundred lines of modifications
that were made to the program. This includes deletions and changes.
In addition,; the TRASH file has the line numbers, in order, of the last
hundred non-condensed statements which were executed.

To look at this file one touches the message TRASH with the
stylus and the most recent thirty lines of program changes appear on
the screen. At the top of the screen the status message at the left
still reads STOP, and the only other message is

f ROLL §

(See Figure 14 or the User'’s Manual.) One can roll through the trash
file just as one rolls through a program. The way to terminate dis-
play of the trash file is to continue with program execution. This
could be done by moving the speed lever away from STOP but it can also
be done by pressing the lever while it remains in the STOP position.
Since execution will start at the beginning of the statement during
which execution was halted, this single cycle execution will have no
effect on the program operation. However, it will restore the pro-
gram to the screen.

2.5 Special Situations

There are four situations which demand special attention. They
are (1) time dependent programs, (2) programs with display output, (3)
display of multi-valued variables, (4) extra long programs.

(1) In general, time dependent programs cannot now be run under
GRAPE. GRAPE does not work as if the basic cycle time of the computer
were being slowed down. Even though GRAPE could conceivably count the
' computer cycles necessary for the execution of a given source program
statement and could simulate interrupts, the user would not be seeing
what this particular user was really interested in seeing, namely the
machine status during the interrupt. However, it is possible to use
GRAPE to test interrupt driven programs in which the timing itself is
not so critical. The user performs the interrupt by halting execution
and starting it at the beginning of the interrupt handline routine.
The insertion and deletion of program statements to create certain
conditions is simple with GRAPE. If one knows that problems arise
when the value of an index variable gets to 1000, he can insert

47

STOP

10

32

33

34

10

50

51

4 ROLL |

IF (I.GT.J) GO TO 18

DO 60 K=1,100

MAT1 (K) 0

MAT2 (K) 0

IF (I.GE.J) GO TO 18

® L)

IF (I.GT.J) GO TO 18

51 52 53 50 51 52 53
52 53 50 51 106 107 108

MOST RECENT LINES

50

112

48

Figure 1l4. Trash File

IF (I.EQ.1000) PAUSE

and then run the program at maximum speed. If one wishes to branch

to an interrupt routine and let GRAPE remember where to branch back
to, one can insert a subroutine call to the routine. Thus, almost the
entire portion of, say, a time-sharing system could be analyzed
although certain time critical contingencies would not be tested.

(2) The fact has already been discussed that display programs
which slowly create pictures, perhaps even light pen sensitive
pictures, are difficult to handle on the GRAPE display. However, there
is no reason why a graphics user should not have two display consoles,
one for GRAPE and one for the pictures. If two displays are not avail-
able, there is an alternative solution. Providing the program is not
an interactive one, that is if no graphical input is involved, the
user could alternate looks at the picture with execution of his
program. The computer operating system would be responsible for sav-
ing and restarting both GRAPE and the partially created picture. A
split screen technique with GRAPE on one side of the display face and
the picture on the other side is also a possibility, but for most dis-
plays considerable additional programming effort would be involved.

There is a programmed use of the display which GRAPE does handle:
the use of the display to simulate. character output on a printer or a
tape. Typical of this is the statement

WRITE (DEVICE, 100) ARRAY, VARIAB, I, J, K

where DEVICE will be a standard output device when this source program
is operating for production but which is the display while the program
is being tested.

The method of display is exactly the same as the method for dis-
play on the trash file. The entire display screen, except for the
top inch or so, is used to perform the output requested in the source
statement. At the top left of the screen is STOP. At the top middle
is {ROLL} . ROLL is meaningful only if the source statement re-
quests more output than can be fit on the screen at one time. Touching
the down arrow with the stylus puts the next lines of display output
on the screen. To terminate the output and continue with the execution
of the program, one moves the speed lever to and away from STOP.
Figure 15 is a typical display.

(3) When the speed is set to STOP, one can request the display
of variables which are not single valued (e.g., arrays, trees,
switches). The display of such variables takes place exactly as with
other requested display output; the source program code is taken off
the screen and, except for the message space at the top, the screen
is used for the display of the variable. The status message is STOP
(since the speed control is at STOP); the only other message is

fROLL| . The way the variable is displayed will depend on its data
structure.

49

STOP § ROLL §

THIS IS DISPLAY OUTPUT
WHICH COULD ALSO BE PRINTED

ON A TELETYPE.

HEIGHT

I
o
&
o

WEIGHT 372648

Figure 15. Display Output

In FORTRAN the only allowable data structure is the array. For
a l-dimensional array, the array is displayed, to its full computer
precision, with about seven entries per row. If ARRAY were a l-
dimensional array of length 24, writing "ARRAY=" at the bottom of the
screen would produce the display of Figure 16. If ARRAY were four
rows by three columns Figure 17 would result. If ARRAY were 50 rows
by 9 columns Figure 18 would result.

In the last example, # ROLLY can be used to display the other
values of the subscripted variable, ARRAY. To terminate the display
and bring back the program code, either move the speed lever away from
STOP or simply press the lever for single cycle execution.

(4) Finally, what of the very long programs? Can GRAPE be used
to analyze a program which after standard compilation takes several
minutes to run, since displaying the execution of all lines may take
thousands of times as long? The answer is that the longer the program,
the more useful GRAPE becomes. With a short program one can often
memorize the entire program, and any clues at all will be sufficient
to explain abnormal behavior. One could even tolerate an octal dump
if the program were short enough. Likewise, one is willing to study
another person's program if it is reasonably short.

It is the long program, with dozens or hundreds of internal
variables and numerous loops and convolutions, that is most difficult
to debug or modify. And it is most difficult precisely because of
the amount of information which is inaccessible to the user both while
the program is (incorrectly) executing and while the user is looking at
a listing. The problem of time for execution is not serious since a
well implemented GRAPE uses an incremental compiler and produces real
machine code for condensed blocks. This mode of execution takes only
slightly longer than full machine speed execution. Furthermore, one
would not run every program statement at delayed speed. The initial-
ization loop in Figure 7 would be run perhaps twice before it was
condensed. All the rest of the iterations would run at full machine
speed.

A savings of many, many hours of human time is certainly worth
some extra computer time. And because of the reduced number of passes
necessary to debug a program with GRAPE, combined with a time-sharing
system which lets other users operate during the interstatement delays,
even the computer time may be reduced.

51

52

STOP

ARRAY (1)

$ROLL

.366241+02

Figure 16.

ARRAY (24)

STOP

ARRAY (1,1)
ARRAY (2,1)
ARRAY (3,1)

ARRAY (4,1)

$ rOLL ¢

Figure 17.

ARRAY (4,3)

53

54

STOP §ROLL)

ARRAY (1,1)

ARRAY (2,1)

ARRAY (3,1)

ARRAY (4,1)

ARRAY (20,1)

Figure 18. ARRAY (50,9)

SITUATION
Program execution

PAUSE, STOP, END

2.6

MESSAGES

GO

USER'S MANUAL

Breakline, Diagnostic sToP

Display output, TRASH

Multi-valued variable STOP fROLL{

Speed set to STOP STOP RESTART SAVE TRASH UNUSED 4ROLL}Y
RESTART initializes program variables
SAVE saves the program and returns to the operating system
TRASH displays recent code changes and an execution trail
UNUSED illuminates never executed code
ROLL rolls the program

SPECIAL CHARACTERS

—Start execution here

> Insert a line

f Breakline (stops execution) /\ Insert text

i3 Condense to one line

BOTTOM OF THE SCREEN

~MheA Bragse a line or a function

Q Move a line

X = requests the value of X

X = 143.2 sets the value of X

X? illuminates references to X

1207 illuminates references to statement 120

55

III GRAPE PRACTICE

3.1 Novel Hardware And Software Building Blocks

3.1.1 Required. - GRAPE draws on a variety of new and experimen-
tal techniques in computing. Although all of them exist in the comput-
ing world, several of them are still at the stage where implementation
is a separate research effort of itself. Thus a full implementation
of GRAPE in 1968 would have been a several man effort. Fortunately,
enough hardware resources were available so that a GRAPE implementation
could be produced which retains many of the novel ideas given here.
This version was written to test these novel features and to demon-
strate the usefulness of the GRAPE approach. In particular, all the
source program execution and the execution function features are
retained, although some flexibility has been lost. Several of the
editing functions do not exist. Throughout this discussion, "source
program" refers to the user program being analyzed under GRAPE, a
"statement" is an instruction in the source program, and a "line"
is a line on the screen. For example, the source program statement
"80 GZ TY 90" may be line 15 on the display.

The GRAPE hardware and software building blocks that were novel
in 1968 are as follows:

1. A computer driven refresh cathode ray tube with the capabil-
ity of drawing several hundred characters and with point drawing
capability.

2. A computer driven graphical input tablet.

3. Software to control the display.

4, Software to control the tablet (and to associate it with the
display) .

5. Character recognition software to interpret information from
the tablet.

6. An interpretive compiler for the higher level language wnich
will produce code that can be handled by the execution phase.

7. The execution phase of GRAPE, which will not only perform
the actions required by the source language statements but will also
take care of updating the information on the display.

8. The editing phase of GRAPE which will allow both editing of

the source language statements and inputting of execution instructions
(such as " ").

56

3.1.2 Provided. - The computer on which GRAPE is implemented is
a Honeywell DDP-516; a l6~bit, l-microsecond machine with a multi-
plexed input/output channel. The mass storage device is a standard
disc drive similar to the IBM 2311. 1In a later section, the trans-
portability of GRAPE to other machines will be discussed. Each of the
building blocks listed above was handled as follows:

1. The display is made by IDI (Information Display Incorporated).
It has character, vector, and point generators, and a light pen. It does
not have subroutining, jumps,; or breaks. More than one display station
can be run from the display generator. At present it is driving three
IDI display stations as described above and one ITT 3-color display.
The color display station does not have a hardware character generator,
and no attempt has been made to put software generated characters on
its screen. In Section V there are comments on adding other hardware
capabilities to the GRAPE system.

It may be argued that excellent equipment should not be a pre-
requisite for this type of research. Such is true and the display had
more capability than was needed. However, lack of a hardware character
generator would be a serious deficiency. This is not so much because
of the extra programming involved in writing a software character
generator but because of the reduction in material which could be dis-
played on the screen. When the flicker on a display is severe,
textual information is much harder to comprehend than picture informa-
tion. Since software generated characters would take 5 to 10 times
as much display time to put on the screen (for this particular display),
and since the flicker is already slightly noticeable, considerably
less material would be visible to the user at one time. But a funda-
mental concept of GRAPE is to give the user a window to his program,
and there is a critical size below which the window is no window at all.
Seeing ten or even twenty lines of a higher level language does not
give the user the feeling that he can see almost everything he wants to.
As a result, hardware character generation is a GRAPE necessity.

2. Both a BBN Grafacon 1010A and a Sylvania Data Tablet 1 were
at the installation and this availability had a great impact on
the basic design of GRAPE. It is the graphical input tablet that
permits editing directly on the source program itself and that allows
direct input of the execution functions. A listing of a program or a
display of a non-executing program is two dimensional, and the tablet
permits corresponding two-dimensional input. All the input problems
of addressing and location which occur if the input device is one
dimensional, such as a teletype, disappear when the tablet is used.
However, for reasons discussed in 5 below, the tablets were not used
in the present implementation.

3. There are several levels of software operations which must
exist in some form for the display. First is the basic function of
refreshing the display at regular intervals and servicing the inter-
rupts from the display. Second is performing user requested control

57

functions, such as disabling the light pen. Third is permitting the
user to change the structure or contents of the display code buffer.

The complexity of these functions will depend on the hardware
characteristics of both the computer and the display. In the present
case, not only did no software exist for the display, but the
economies of Section I applied, and it was necessary that the display
run in a time-shared environment. Furthermore, it was intended that
there be multiple displays running simultaneously in this environment.
(The author was involved in the design of the time-sharing system and
was able to guarantee that the system was conducive to the use of
displays.)* The precise implementation of the various levels of soft-
ware is not of interest here, but the incorporation of computer driven
tablets in a time shared environment is somewhat unusual, and the results
of this effort are described in Section IV.

4. Software was developed according to the design in Section IV
to control the graphical input tablet. The software accepts data from
the tablet, delivers the data to the user (probably the character
recognizer), and associates a tablet with a display for the temporary
trace. But the graphical input tablet has not been used in the present
implementation of GRAPE.

5. Character recognition is not a feature of the displayed
execution of GRAPE. It is, however, important in the "naturalness"
and total environment supplied by GRAPE. While many people compose
papers at a typewriter, few prefer a typewriter to a pencil in order
to indicate the errors on a page of text. Character recognition is the
capability of the computer (via software) to recognize input from a
graphical tablet as being certain letters (ref. 10). Those who have
seen editing being done on a graphical input tablet with a good
character recognizer and a good editing program already appreciate the
usefulness of this tool. Those who are not familiar with this
technique may just consider how often they have made penciled correc-
tions on a sheet of paper and wished that the corrected version would
magically appear. Certainly the naive computer user would insist and
the experienced user would prefer that the tablet be available to him.

Because of continuing hardware difficulties and delays connecting
the tablets to the computer and because the character recognition is
not vital to the demonstration of GRAPE, use of the tablet was fore-
gone and the teletype was used instead. It was desirable, however,
to use graphical methods rather than teletype input for the man-
machine interaction which occurs during the source program execution.
Therefore, the speed of execution of the source program is controlled
with the light pen. Appropriate light pen software was already written
(by this author) as part of the display support system.

6. Some sort of compilation of the HLL program is required
which permits analysis of the source language statement and display
of the temporary results according to the original HLL statement, for

*A description of the graphics software can be found in Section IV.B
of the NASA/ERC Computer Research Laboratory Systems Programming Manual.

58

there is not enough information in the machine language to pro-

duce the displays desired. One must retain not only the character
string of the source code but also information about the statement's
meaning. This can be done by interpretive compiling, that is by
recompiling each statement every time it is executed, or by incre-
mental compiling, that is by compiling each statement once and storing
it in some intermediate code. This latter makes the statement easy to
execute but retains the necessary information to make it properly dis-
playable. More sophisticated incremental compiling which would bind
blocks of executable code together could be used for sections of code
which are not to be displayed. Notice that it must be possible to
start execution of the source program anywhere, even following code
which is incorrectly written. Such modes of compilation mean the
existence of a properly constructed compiler. No such compiler
existed for the DDP-516, therefore, this author wrote one.

Writing a topnotch interpretive or incremental compiler is not a
straightforward task because the ideas are not so well understood as
with normal compilers. To simplify the compiler's job, the source
language was simplified. In particular, some FORTRAN statements were
left out, the formats of permissible statements are rigidly defined,
and little error checking is done. The syntax rules for the FORTRAN
version used in this implementation will be given in 3.2. Section
3.3 contains a description of the data bases and of the compiler.

7. The source program execution and the execution functions
work essentially as described earlier. Some reduction has been made
in the sophistication of the material displayed, but the results of
every statement are still clearly indicated. The speed control works
by means of a light pen visible speed line on the display face.

All the execution functions are implemented. They are invoked
via a keyboard rather than a tablet, but they still appear on the
display.*

8. The editing functions in the implemented version of GRAPE
are different from what was described above. First, all editing

*I write keyboard rather than teletype because GRAPE's reaction to
the input is always on the screen, not on the teletype paper. Thus,
even though it is a teletype that is active, only the keyboard part
is actually used.

59

is done via keyboard. (As with execution functions GRAPE responds on
the display screen.) Second, TRASH is not implemented nor is UNUSED
and associated functions. These features do belong in any production
version of GRAPE, especially for use with long HLL programs.

3.2 Implemented GRAPE -- User Side

3.2.1 Basics. - The design philosophy of this implementation
of GRAPE is the same as that of the ultimate GRAPE. What makes this
version different at the conceptual level is the change in hardware.
The user has a display, a light pen, and a teletype.

The light pen is used only for controlling the speed of execution
of the source program. Touching the speed line with the light pen
sets the speed of execution; the top is the fast end, the bottom is
the slow end, the very bottom is STOP. The section of the line cor-
responding to the present speed is brighter than the rest of the line.
Similarly the word STOP serves as the status message; it is displayed
more brightly when the program is not executing.

The teletype is used to input commands to GRAPE (commands to
perform the execution and editing functions) and to input changes
to the source program code. A command is composed of a command code
and one or two operands which are generally line numbers. For example
to delete line 14 one types DELETE 1l4.* To condense lines 20 through
25 one types CONDENSE 20 25. Here one is issuing commands to a system
to perform a function, whereas with the graphical input tablet, one
would perform the function directly. However, all functions have an
immediate visible result so the intruding system is existent but not
mysterious.

The display screen setup is shown in Figure 19. The permissible
source program statements are all short, so the displayed variables
were moved to the right side of the screen, leaving room for additiona
lines of code. STOP serves as the status message. No other messages
appear since functions are initiated at the keyboard.

3.2.2 Source Program Execution. - Source program execution takes
place in a manner similar to the execution described in 2.2. The
program is executed one statement at a time, and appropriate results
are displayed. When control transfers to a statement which is not
presently on the display, a new page of source program code headed by
that statement is put on the display. The line number of the presentl
executing statement is brightened as is the section of the speed line
corresponding to the present execution speed.** Displayed variables

*Actually the format is the first three letters of the command
followed by the one or two 2-digit line numbers.

*fThis latter feedback, although not necessary, is useful because the
light pen can pe put down on a table while the program is executing.
The graphical input tablet stylus would remain in place at the curren
speed.

60

are properly updated when an arithmetic statement modifies them. The
statements PAUSE and END halt execution and the status message at the
bottom of the speed line changes from STOP to STOP.

The HLL used in this implementation is a subset of FORTRAN 1IV.
Its syntax rules are given in Figure 20. (A knowledge of FORTRAN IV
is presumed.) Every statement, except READ and WRITE, takes one
execution cycle. 1In Figure 21 there are some sample statements
brightened as they would be during execution. When more than one event
might take place, e.g., a logical IF may be false or true, more than one
sample is given. typical display is shown in Figure 22.

Execution errors, such as trying to transfer to a non-existent
statement, cause an error message to be typed on the teletype.

3.2.3 Execution Functions. - All the GRAPE execution functions
occur in the implementation and the discussion below somewhat follows
the discussion of 2.3 on the full GRAPE execution functions. The speed
line on the face of the display works like the speed control in a tablet
implementation. The teletype is receptive to execution or editing
commands only when the speed is at STOP. To continue with execution
if the speed is STOP, one touches some other section of the 1line.

The —= function is performed by typing START followed by the
line number; e.g., START 4, As in Section II, one must then move the
speed control from STOP to induce continuous execution.

Because there is no easy way of controlling the speed of source
program roll with the light pen, two functions have been implemented
which move the program forward. Typing ROLL n (e.g., ROLL 12) rolls
the program forward n lines, at the rate of two lines per second. The
command PAGE displays the next full page, the next 40 lines of program
code. As with the full GRAPE design, if execution is begun following a
ROLL or PAGE but not a START, the line which was executing when the
program stopped will be immediately brought onto the screen.

Typing RESTART puts the first page of the program on the screen;
however, it does not undefine all the variables and it does not change
the present execution line.

Typing SAVE will do what touching SAVE with the stylus would do.
When the computer is not running in the time shared mode, the command
SAVE will store on the mass storage device the present version of the
HLL program, but control stays in GRAPE.

The above commands correspond to the five functions of 2.3.1.
The next few commands correspond to the three functions of 2.3.2. .
They perform in a manner very similar to the original (Section IT)
design, and no special examples or discussion are needed here.

61

01
02
03
04
05
06

19

20

STOP

62

Figure 19.

Display Setup

C COMMENT LINES ARE VALID
A=B
A=BeC
A=BeCed
A=z (B,C,D)
Zz(A,B,C)=D
GO TO SA
GO TO (SA,SB,SC),A
IF(A)SA,SB,SC
IF(A.LR.B)GO TO SA
CALL SUBRXX(SA)

SA SUBROUTINE SUBRXX
RETURN
READ A
WRITE A
PAUSE
END

A,B,C,D are constants or are one-letter integer variables.

7 is an array of dimension 4,20,10.

SA,SB,SC are two-digit statement labels. Any statement
can be labeled in columns 1 and 2.

® is +, -, *.

LR is a logical relation EQ,NE,LT,GT,LE,GE.

Input and output is in I6 format on the teletype.

Only one level of subroutines is permitted.

There can be no imbedded spaces.

Figure 20. Language Syntax

63

80

THIS IS A COMMENT
GO TO 30

GO TO (10,20,30),I
GO TO (10,20,30),I
GO TO (10,20,30),I

IF(N)10,20,30
IF(N)10,20,30
IF(N)10,20,30

IF{I.EQ.J}GO TO 40
IF(I.EQ.J)GO TO 40

I=J-9*K =-00012
z(3,1,5)=K = 0l488

CALL NEWTON (80)
SUBROUTINE NEWTON
RETURN

READ A
WRITE A

PAUSE
END

Figure 21. Sample Statements

01 I=3
02 C SET ARRAYS
03 IF(N.GT.0) GO TO 10
04 J=K*2+L
05 GO TO 30 X=-00001
06 10 J=K*2-L I= 00003
07 30 Z(1,J,K)=1
08 IF (L)40,40,45 l
STOP
Figure 22. Typical Display

65

One can set a breakline at line n by typing SETBREAK n. This
breakline can be crossed out by KILLBREAK n.

The HLL program variables are displayed on the right side of the
screen by SHOW VARIABLE n, where n is a number from 1 to 25 corre-
sponding to the variables A through Y. This variable can be removed
from the screen by REMOVE VARIABLE n. A maximum of five variables can
be displayed at one time. The value of a single-valued variable can be
set by typing VARIABLE SET n m where n is the variable and m is the
new value.

CONDENSE n m will condense from line n to line m. EXPAND n will
serve to cross out the condense character at line n and bring back
the hidden lines. Any illegal input, such as the use of a line number
which is not presently on the screen, causes an error message to be
typed on the teletype.

3.2.4 Editing Functions. - Typing DELETE n while the speed is
STOP will delete line n from the source program. For example, if one
typed DELETE 39 when the bottom of the screen read

38

F = 128
39 G = K* 34
40 H=V -W

the bottom of the screen would then look like

. »

38

F = 128
39 H=V - W
40 I=6%*1I+4J

Similarly typing INSERT n followed by a FORTRAN statement will push
the bottom line off the screen and insert the new statement after line
n. One can type CHANGE n followed by the new statement to change a
line of code. Finally, typing MOVE n m will move the present line n
to just after the present line m. Blocks of code can be moved by
condensing them to a single line. Illegal inputs cause error messages
to be typed. These four commands correspond to the five functions of
3.4.1. Change serves for both A and overwriting. The compiler
features and the two messages described in the last part of 2.4.2

are not implemented.

Setting variables was discussed under execution functions; array
entries must be set by a program statement.

66

gome other points are worth mentioning. When GRAPE is first
started there is a comment statement on line 1. Otherwise there
would be no way to insert the first statement of a new program. If
the source program to be run is already on the mass storage device
(disk), it will be automatically read when GRAPE first starts. The
time-sharing system has a set of special characters which permit the
user to erase the iast character, the last word, or the last line he
has typed. The line numbers in this GRAPE are done differently from
the earlier description. Here the line numbers 1 through 40 are
always on the screen. They serve as markers for editing and execu-
tion but not as reference points in long programs.

67

3.2.5 User's Manual

SITUATION MESSAGE
Program Executing Part of speedline is bright

Program Not Executing STOP: below speedline, is bright

SPECIAL CHARACTERS

[] Condensed code

l Break line

EXECUTION FUNCTIONS

START N start at SETBREAK N break line at line N
line N

ROLL N roll N KILL BREAK N erase break at line N
lines

: . 1 - 25

PAGE turn one SHOW display variable A -y
page VARIABLE N

RESTART beginning REMOVE do not display N
of program VARIABLE N

SAVE save the VARIABLE set variable N to M
program SET N M

CONDENSE N M condense EXPAND N erase E] at line N
N to M

EDITING FUNCTIONS

DELETE N delete CHANGE N S change line N to S
line N

INSERT N S insert S MOVE N M put line N after M
after N

S is a program statement

68

3.3 Implemented Grape -- System Side

3.3.1 Concepts in the Programming. - The GRAPE system is a
collection of about 60 Fortran subroutines. Since it was clear from
the start that the design of the execution functions and the editing
functions would be modified as visual results replaced mental images,
a special effort was made to separate cleanly each of the functions
into a simple short subroutine. Both comprehensibility and ease of
modification were enhanced by this software modularity. (Many of
these short subroutines are in fact used as co-routines. That is,
after control has filtered down from a driving routine through one or
more levels of analysis to the routine which performs the appropriate
function, the control goes directly back to the driving routine.)

Another aspect of the modularity in the GRAPE system is that the
input/output has been separated from the rest of the system. This was
done since changes in peripheral devices are likely in further imple-
mentations of GRAPE. For example tablet input and character recogni-
tion will be substituted for teletype input. More important is the
possible change of display hardware, since the use of the display is
pervasive throughout the GRAPE software. Commands and data for the
IDI display hardware are handled as variables whose values are set in
the initialization section of GRAPE. A change of displays did occur
during the implementation, and it was handled with little difficulty,
but the two displays were guite similar. Moving GRAPE to a new
computer with a differently structured display would be a harder task,
but the isolation of the display data should simplify it.

3.3.2 Structure of the System. - Appendix A is a listing of the
GRAPE system. In the description below, subroutine names are
occasionally included, e.g., EDITOR. The more interested reader may
wish to look at some of the routines. A description of the data
structure follows the over-all program description and reference to
it will make the listing more intelligible. A complete reading of
3.3 should precede one's looking at the program.

The system is divided into four sections: initialization, com-
pilation, execution, function.

INITIALIZATION

These routines set up variables and constants which are used by
the other programs. Typical of these are character gtrings‘apd the
display screen size. The routines are set to approprlape_lqltlal values ¢
various information in the data structure such as Fhe initial execution
speed. They set up variables and constants when bit patterns are.
relevant for the particular display being used. Finally the initial
picture on the display screen is generated.

69

COMPILATION

The compilation section (READST) takes one statement of a source
program and compiles it into an intermediate language which the exe-
cution section will understand. It also places the new statement in
the data structure with proper reference to the statements which
precede and follow it physically (not logically) in the program.
Finally, it saves the input character string so that it can be display-

ed on the screen (PACK). ©No special compilation is used for condense
blocks.

EXECUTION

The execution section is made up of a driving program, XECUTE,
which during source program execution does the initial analysis of each
statement, including checking for break lines and checking for user
induced changes in execution speed. Most of the subroutines in this
section handle the execution of a particular statement type, e.g.,
XCOMNT takes care of COMMENT statements. UNDO has the general function
of removing from the screen the intensification resulting from one
statement execution and preparing the screen for the next statement.
DELAY has the function of delaying while each source program statement
is intensified. When GRAPE is running under time sharing, DELAY works
by calls to the time-sharing scheduler. When GRAPE is the sole user of
the computer, it simply executes a short loop to waste time.

FUNCTION

The function section is structured in a way similar to the execu-
tion section. When execution stops, control is transferred to a driving
program, EDITOR, which does the initial analysis of any requested func-
tion and then calls a separate routine to actually perform the function.
For example, DELETE deletes a source statement. These function programs
do not update the display screen. They work by changing the data
structure representing the source program. REGEN regenerates the screen
after the routines have modified the data structure. EDITOR also
begins program execution when the speed is changed from STOP.

3.3.3 Data Structure. - Some information about the data blocks
in GRAPE will help in understanding how the implementation is actually
constructed. Preceding the listing of the program in Appendix A is a
listing of the COMMON areas. Since no names are duplicated one may
consider these variables and constants to be external to all
programs in GRAPE. In IDICOM are constants which are display commands.
They set certain features of the display hardware, such as intensity
and light pen visibility. In BUTCOM are variables which relate to in-
formation which regularly appears on the screen, such as line numbers
and the speed control. INPCOM is used by the compilation section as
an input buffer and as permanent storage for the character string of
each source statement. EXCOM contains character strings which are used
during execution, the variables A - Y which are used as data in the HLL

70

source program (VAR), and temporary information which describes the

line being executed. EDCOM contains information used during program
execution. This information was set up during the compilation phase

and may be modified during the editing phase. SUMCOM has additional
information about each source statement. It also has information about
statement labels (FORTRAN "statement numbers," e.g., 44 I = 1), location
in the display buffer of a statement, line numbers on the screen (e.g.,
10 44 T = 1). OTHCOM has more information about line numbers and also
has more information about the statement being executed.

Most interesting is the information used during execution. The
following data is available for each source program statement.

(a) the intermediate language results of the compilation,
namely the type of FORTRAN statement (TYPE in EDCOM) and the program
variables in that statement (STATE in SUMCOM)

(b) the original code (STUFF in INPCOM)

(c) the present visibility status of the statement, either
visible, preceded by a breakline, deleted, or condensed (VIZ in EDCOM)

(d) the next physical (not logical) statement in the program
(POINT in EDCOM)

(e) the present location of that statement in the display
buffer (DBUF in SUMCOM) and the present location of that statement on
the screen (LBUF in SUMCOM)

Also used during execution is STLABL in SUMCOM which tells which
statement has a given statement label. The other large array, LINNUM
in OTHCOM, is used in editing. It tells which statement is on a given
line of the display screen. Relevant to (d) above notice that there
is no backward physical pointer. As a result only forward ROLLing is
(easily) implemented. For the same reason, when a new section of text
appears on the screen, the presently executing statement is the top
line on the screen, not the third or fourth.

3.3.4 Other System Information. - Certain programs called by
GRAPE are not part of the GRAPE system. Most of them are part of the
time-sharing system and are related to the display.

DSPATT assigns a display to the user.

DSPTRN turns that display on or off.

MOVU2D puts user generated display code into the display buffer
(i.e., onto the screen). The new code may be appended to
the buffer (to add to the picture) or may replace code
which is already in the buffer (to change the picture).

DSPCUT shortens the display buffer, thus removing from the screen
the most recently appended information.

71

DSPSIZ returns the size of the buffer, i.e., the location where
the next block of code will be appended.

LPNSBL activates the light pen.

LPNCLR clears the light pen hit buffer.

LPNRD delivers the light pen hit buffer to the user.

RDIN, WRLS, SEARCH are disk input and ouput.

BN2DEC turns an integer into a character string.
The subroutines in GRAPE are listed below. Figure 23 is a block dia-
gram of the system. Certain very commonly used subroutines such as

UNDO and DELAY are not included in the block diagram, which is intend-
ed to give a basic feeling for the flow of control in the system.

INITIALIZATION COMPILATION
MAIN READST
SETCON STNUM
SETLET VARIAB
SETARR PACK
SETBUT

EXECUTION FUNCTION
- XECUTE EDITOR
PENSEE STOOP
XCOMNT REGEN
XGOTO CHANGE
XCGOTO INSERT
XPAUSE DELETE
XEND CONDEN
XREAD EXPAND
XWRITE START
XRITH MOVE
XARTHF SETBRK
XARITH KILBRK
XLOGIF VARSET
XYSLGF SHOVAR
XNOLGF PUTVAR
XSUBRU REMVAR
XSBCAL SAVE
XRETRN OUTLIN
XARREV RESTRT
XVEARR RENTRY
BRAKE PAGE
UNDO ROLL
DELAY RANGE
EXERR EDERR

72

Z
> o
z

INITIALIZATION
LIGHT PEN HIT
EDITOR N XECUTE
) SPEED ¥ STOP
REGEN STOOP PEN
— — PENSEE PEN HIT
SPEED = STOP
BREAKLINE
EDITING + EXECUTION
EXECUTION OF
FUNCTIONS STATEMENTS
INSERT PAUSE, END
CHANGE
COMPILATION

Figure 23.

GRAPE Block Diagram

3.3.5 Graphical Input Tablet Interface. - The interface of
the graphical input tablet with the rest of the GRAPE system must be
described separately since it is not part of the implementation. 1In
the light pen and keyboard implementation during source program execu-
tion, the light pen is checked after every execution cycle. Light
pen hits which are not on the speed line are disregarded as are all
but the most recent one of the hits on the speed line. Similarly,
when a graphical tablet is used, after each execution cycle GRAPE
will read the tablet input buffer and take the most recent position
on the speed line as the current speed. During source program execu-
tion GRAPE requests the computer executive system that no ink
trace be put on the display, that points be recorded only when
the stylus is resting on the tablet, and that the data rate be slowed
to about twenty points per second. If the computer system does not
understand such requests, GRAPE will have to do this data reduction.

It is easy to tell whether the stylus is on the speed line since
the line is at a particular X value with a range of 1/4 inch to either
side. The length of the line is divided into about twenty discrete
speed areas. If the stylus is resting precisely on a division between
areas, the Y value input may alternate between the two areas and the
speed of execution will alternate between the two speeds. This could
be remedied by requiring that the stylus have moved at least 1/4 inch
before a change in speed is recognized. However, the difference
between two successive speeds will not be readily noticeable to the
observer, and the speed is not likely to remain at any particular
setting for very long. Therefore, adjusting for this rare occurrence
is not warranted.

When the speed has been set to STOP, GRAPE requests the computer
system to record input data points in the manner that the character
recognition program prefers. As soon as a single data point away from
the speed control is read, all tablet data points go directly to the
character recognizer. It returns to the GRAPE system the charac-
ters written, including their locations and sizes. The recognizable
characters must include all the characters from the higher level
language plus — , A ., >, , 3, 2, ¢ , t , mww.

The use of graphical tablet data to edit a page of computer program
code has already been demonstrated, most notably at Rand (see foot-
note in Section 2.4.1). GRAPE knows where every character on the
screen is and can update source program code, as required.

If no characters are being written, GRAPE does nothing. However,
when the last few characters are the name of a variable plus an equal
sign at the bottom of the screen, then the value of the variable is
displayed. If > is written between two line numbers, GRAPE must
adjust the display and set up proper internal pointers for the new
line. Likewise when a line is deleted, when a variable is changed at
the bottom of the screen, when a breakline is inserted or deleted,
when statements are moved or condensed, or when —s is drawn, GRAPE

74

updates its internal data structure and the display screen. These are
the same actions that were done for these functions in a keyboard imple-
mentation. In the case of — , if the statement has been edited,
recompilation must precede execution. Any character, including a non-
recognizable one, that is drawn over a message such as RESTART means

that this function is to occur, except that if UNUSED is on, an erase
character will turn it off.

Any character drawn at the STOP end of the speed control means
perform whatever compiling has become necessary because of changes in
code, then execute one cycle. Furthermore, tablet data now comes to
GRAPE, as it did earlier during source program execution, instead of
going to the character recognizer. '

ROLL is a special situation. The user will be holding the stylus
down on one of the arrows and GRAPE, not the recognizer, will have to
examine the data points. There are two ways in which GRAPE might get
control of the input data, depending on the computer system. The
tablet input software may have an alarm if the stylus is pressed down
for too long, or GRAPE may look at one X,Y coordinate pair every
half second to see if the stylus is near ROLL.

There are convenience reasons for using the character recognizer
to tell whether the user is pointing to any of the messages except
ROLL. First, tablet data is uniformly handled by a single program,
thus limiting the amount of programming which must be put in GRAPE.
Second, the recognizer is already programmed to adjust for noise from
the tablet. Third, the recognizer sees characters only after pen
strokes are completed, that is when the stylus is no longer being
pushed down on the tablet to trigger the pen point switch. As a result,
the request of a function will be known to GRAPE only after the stylus
has been pressed on the message, not during the pressure. This solves
the problem of accidently performing a function a second time because
GRAPE had completed it the first time before the user had lifted the
stylus.

3.3.6 Language. - Some comments are in orxder for choosing the
language for the implementation being discussed. Some claim that
using a machine oriented language is the only way to write "systems"”
while others claim that higher level languages should be used. The
latter say that the loss of efficiency and loss of flexibility is more
than compensated for by the speed of programming and clarity of
programs. Direct transferral of programs from one machine to another
is another advantage of HLL, although work such as this is often
machine dependent.

The trend is towards higher level languages. For example,
MULTICS at MIT is written in PL/I (ref. 11). (I have done systems
work in both machine oriented languages and procedure oriented
languages and my preference is definitely for the latter.) BCPL,
although not perfect, is probably the best available language for_the
task. Among its useful features are an increased variety of cond}tlon—
al loops, recursivity, freedom in creating data structures, and direct
reference of both the contents and the address of variables.

75

If the computer language revolution involving "compiler-compilers
and "extendible languages" does not occur in the next few years, the
inevitable popularity of PL/I will cause it to be the most used
language for system work.

FORTRAN is certainly not ideal for systems work. Designed
primarily for scientific work, FORTRAN'S most highly developed feature
the mathematical routines and the input/output routines, are useless
for writing systems. This language has only one kind of loop, has no
facilities for letting the user get at the machine hardware, has
limited facilities for distinguishing between external and internal
variables, and has severe restrictions on the form for subscripts and
loop indices. Further, it has no facilities for dealing with inter-
rupts. Both the code produced and the library subroutines are rarely
re—-entrant.

However, with the help of a few short assembly language
routines, plus a few programming techniques, one can write systems
in FORTRAN. Typical of the former are routines which permit bit
manipulation in the live registers. Typical of the latter is a
technique for referencing specific physical addresses in memory.

Given that a HLL language is going to be used for a particular
system, and given that for an average size "system" the extra trouble
it takes to program in the worst of these languages is less than the
extra trouble it takes to write a new compiler, the availability of
a particular language may be the determining factor in the decision
of which language to use.

The time-sharing system of which the display system software
described above is one part is written in FORTRAN. Eighty to ninety
percent of the code is in FORTRAN. The reason that there is even
that much assembly language code is that the instruction set of the
DDP-516 is not large. Thus, saving the live registers of the com-
puter takes about fifteen instructions, while on some computers savinc
them takes only one.

GRAPE is written entirely in FORTRAN. It consists of many
short routines which are essentially self-documenting. The
present implementation could be moved to another computer and
display much more easily than one could rewrite it from flow-
charts, but it is not machine independent. It depends slightly
on the structure of the DDP-516, slightly on the display system
software which is running on the DDP-516, and somewhat more on
the IDI display. Changes to GRAPE to accommodate differences
between computers would not be difficult. Changes to accommodate
differences in displays would of course depend on how different
the displays were.

76

On the success of writing GRAPE in FORTRAN, it can only be
said that the programming was not difficult. (It would of course
have been helpful to use GRAPE to debug itself.) Additions and
changes to GRAPE which were indicated during on-line experience
with the system were easy to make. Finally, it takes relatively
little effort for a person unfamiliar with the programs to under-
stand them.

3.4 Results of Implementation

3.4,1 Teaching Tool/Analytic Tool. - The original implementa-
tion was a research effort and much that was learned has been
reflected in the GRAPE design of Section II.

GRAPE has proved to be useful and effective as a teaching
tool because, while a beginning programmer is not at all capable of
interpolating backwards and forwards through a program armed only
with input/output results, with GRAPE the novice gets individual
dynamic instruction on how every statement operates. He gets to
try easily his own programs,and GRAPE makes visible all that he
could not see. For teaching programming, interpretive execution
on a teletype oriented time-shared computer is a vast improvement
over batch processing with two day turn around; GRAPE is as vast an
improvement over the teletype.

When GRAPE was used, results indicated that no instruction is
necessary to teach someone the meaning of the information being
temporarily displayed on the screen, as described in Source
Program Execution, 3.2. As intended, the user can follow the
display without comprehending each line of code. And this is true
even though the display is not as clear as it would be in a GRAPE
implemented according to the theoretical design. The input to imple-
mented GRAPE is much less natural than it might be (being teletype
rather than tablet) but it is not hard to learn. Ten minutes live
demonstration and the one page User's Manual are all the informa-
tion an inexperienced programmer needs. And a half hour experi-
menting with the system on his own will make him a GRAPE expert.

Although the GRAPE language limitations have kept any large
tasks from being implemented with GRAPE, many people have experi-
mented with GRAPE and a few people have used it on real pro-
gramming problems with favorable reactions. GRAPE seems to be of
real value as a program debugging and program modification aid.

. The value of GRAPE in two of its three areas of application

1s thus described. The first area of application is as an aid

for teaching programming. We have already discussed how GRAPE helps
during the stage when the novice cannot visualize how a program
sequence might work, as well as how GRAPE provides the immediate
rginfqrcement so helpful in learning. The second area of applica-
tion is an aid to understanding and perhaps modifying someone

77

else's program. GRAPE does everything that one tries to do during
a desk simulation of a program's cperation. GRAPE does the work
faster and it does not make mistakes. Computations and calcula-
tions are done by the computer; the user is free to concentrate

on where and how the program operates. With the GRAPE execution
and editing features, one can modify a program by trial and error,
something which one would not do if his only feedback was pro-
grammed output.

3.4.2 Debugging Tool/Programming Errors. - The third GRAPE
application area is program debugging. A survey was made of
several programmers whose programming experience ranged from two
months to several years. The programming errors most frequently
mentioned as common sources of trouble are listed below:

1. A variable name changed but not everywhere
2. Bad array entry M(I,J) for M(J,I)

3. Poorly done input/output

4, Incorrect mode declaration

5. Infinite loops

6. Misuse of subroutines

7. Accidental local use of an externally defined variable,
mistake using COMMON

8. Neglected special cases

9. Testing of boundary conditions

10. Wrong relational (< instead of >) or wrong logical
(doing some operation based on a result of TRUE instead

of a result of FALSE)

11. Forgetting simple things, such as initializing or
incrementing

12. Wrong order of doing things e.g., computing a result,
then resetting the variable, then outputting the variable,
instead of doing the output before the reset.

13. Reference to the "wrong variable"

14, Bad arithmetic statement

78

Indications are that the programming errors in the development of

a time-sharing system (not the one GRAPE runs under) and the errors
in a lengthy applications program are of these types. All of the
errors in the applications program and almost all the ones in the
time-sharing system fit into one of the above categories.

The first error is an error which a good editor will handle.
It should be possible to say "change all occurrences of character
string A to B". When error 2 generates out of range subscripts,
an error checking interpretive compiler (as recommended for use
with GRAPE) will catch the fault. It is felt by many that error
3 is basically a problem with the language. Better input/output
facilities in the FORTRAN language are regularly implemented on
individual computers. GRAPE does provide the capability to check
"line" oriented input/output such as might be read or written on
teletypes or line printers. ©No help is provided for checking forms
of I/0 such as binary output to a magnetic tape.

The operation of GRAPE, as described in Section II makes
certain errors almost impossible to miss. Errors 4,5,6, and 7
fall into this category. Infinite loops, in particular, are
delightful to watch in execution. Figure 24 is an unnecessarily
complicated program to do integer multiplication by successive
addition. In it is an error in which attempting to square a number
causes an infinite loop. The error, and a possible correction,
stand out vividly when the program is run under GRAPE as shown in
Figure 25.

GRAPE does a good job of calling type 8 errors to the
attention of the programmer. Since expressions are evaluated
during execution, the particular values which must be separately
dealt with are relatively easy for him to notice. Similar to this
is type 9 since the boundary conditions are possible special situ-
ations. The programmer can watch how these conditions and values
are treated by the program and be satisfied that all is well. This
is particularly useful if these conditions are not explicitly set
by the programmer during the normal (non-GRAPE) execution of
the program. Using GRAPE he can preset values which would normally
be calculated and can avoid execution of the statements which do
calculate these values.

With GRAPE, errors 10, 11, 12 are readily detected because
of the feel the programmer has for his own program. If he sees,
brightened in front of him, that COEF equals 45.2 and that
because of this the routine that handles zero coefficients is entered,
he will recognize that he wrote his test statement backwards, *
If he sees that the first value of the variable SUM is 25,490,
he knows he forgot to initialize it. Likewise he knows where his
output is being done, and if he sees his carefully calculated
results being set to zero before the output section is reached,
the programmer will react.

*This kind of information simply would not be available without
GRAPE type operation.

79

30

10

20

30

Figure 24.

C=A*B WITHOUT

M=A

N=B

C=0
IF(M.EQ.0)GO TO
IF (N.EQ.0)GO TO
IF(M.LE.N)GO TO
C=M+C

N=N-1

IF (N.GT.0)GO TO
GO TO 30

IF (M.GE.N)GO TO
C=N+C

M=M-1

IF(M.GT.0)GO TO

PAUSE

30

30

20

10

10

MULTIPLICATION

Program With an Infinite Loop

Cycles 1,3,5,... 10
20
Cycles 2,4,6,... 10
20
Figure 25.

O IF(M.LE.N) GO TO 20

(0 IF(M.GE.N)GO TO 10

O IF (M.LE.N)GO TO 20

O IF(M.GE.N)GO TO 10

Execution Of An Infinite Loop

81

The GRAPE display technique helps the user detect type 13
errors by calling his attention to the line as it is being
executed and by displaying the value of each variable. If one
sees his own program say IF (2 .EQ. 25340) when something
approaching equality was expected, he will suspect something is
amiss. Errors of type 14 usually result in values which are
thousands of percent off; wrong variables or a neglected division
are the typical mistakes.* GRAPE makes these errors impossible
for the programmer to miss. For the rarer type of arithmetic
mistakes, such as initializing pi to 3.17, only hand calculations,

with GRAPE doing the computer work perfectly, will catch the
error.

*Personal experience plus programmer survey.

82

Iiv. TIME SHARING HIGH SPEED GRAPHICAL INPUT DEVICES
4.1 Central Problems

Several major design problems must be met when time sharing
high-speed graphical input devices. Identifying these problems
and the discussion of the effects of the feasible solutions out-
line the requirements for the graphical input section of a time-
sharing computer executive system.

There are some problem areas in the time sharing of high-
speed graphical input devices which are independent of time
sharing. First is the fact that input is occurring. Input and
output are more complicated than straight computing because the
characteristics of the peripheral device must be considered as
well as the characteristics of the computer. Second, the input is
being produced directly by a human and so the relevant character-
istics of human beings, for example the jitter when someone draws
a "straight" line, must be considered. Third is the amount of
computation required. Whatever computation is necessary to accept
and store input data must be repeated hundreds of times a second.
Even a few microseconds of computing for each data point will
consume a large percent of the central processor's computing time.
One hundred microseconds of computing repeated 1000 times a second
would be 1/10 the computing power of the machine. Fourth, graphics
software takes a lot of computer space. A large buffer is
necessary to store data which may come to the computer at the rate
of 1000 points per second. If this data is to be instantly avail-
able for analysis it must be readily accessible and must stay in
physical memory rather than be put on a storage device. The
programs to analyze data from a high-speed input device are also
long and complex, and if one wishes to analyze the data at such a
rate as to give the human user real-time response to his input,
then these programs must also be rapidly accessible.

There are problems which arise because of the time-sharing
environment which must be solved satisfactorily for the graphical
section of the executive system as well as for any other section.
One must ensure that one user cannot affect the data or the equip-
ment of another user without explicit permission. One must ensure
that scheduling for service of the various graphical devices is
done fairly so that one user does not inadvertently get better
response than another, although all graphics users require better
response from the system than the teletype users require. One
must decide how (or if) each user will be assessed for the
services provided.

Some problems occur because both time sharing and graphics
are involved. These all have to do with the real-time require-
ments of the graphics hardware superimposed on a time-sharing
environment which cannot guarantee access to the central processor
to a particular user at a particular time. With input occurring
at such a high rate, the time it takes the system to switch users
makes it impossible to give control to the graphical user to let
him process each data point as it arrives. Therefore, the
executive system must assume responsibility for controlling the
device and maintaining an input storage buffer that contains the
input data from the device and can be read by the user.

83

In general purpose time-sharing systems, the executive
system rarely performs a function for the user which the user
could do himself. One reason for this is that making programming
changes to the executive is dangerous when many users are depend-
ing on an error free system. Another reason is that time during
which control is in the executive is often considered overhead,
and the cost for this time is shared by all users. Finally, in a
time-sharing system when input/output, including paging, is
required by one user some other user can operate, but when it is
required by the executive itself no user will run. But there are
functions concerned with graphical input devices which could be
performed by the user that are better performed by the executive.
The following three sections deal with functions related to graphical
input devices which the executive of a time sharing system must do,
functions which the executive ought to do in order to provide good
services for the users of graphical devices, and functions which
the executive system might do even though the users could also do
them.

4.2 What Must Be Provided

As with any peripheral device, a particular input unit must be
associated with a particular individual; this allows the individual
to refer generically to the device type from within a program rather
than forcing him to specify the physical number and it prevents
one individual from (accidently) reading or destroying data which
was meant for someone else.

As with all input/output, the system executive will control
the device. This involves responding to the interrupts and accept-
ing the input data. It also involves sending control signals to
the device, often at the request of the user. These would include
turning the device on or off, perhaps changing the rate of inter-
rupt, perhaps setting some mode control within the device.

As with other peripherals, the executive system responsible
for the graphical input must keep track of usage so that each
user can be properly charged for usage by the system.

Another function which the system must perform comes about
because these devices may be interrupting the computer as often as
every millisecond. The system must collect the input data and
store it away until the user gets a chance to process it. The
simplest thing for the system to do is to retain some fixed amount
of buffer space and to add data words into this space as they
arrive from the device. When the space is full, the executive
will collect no more data. The user is responsible for emptying
this buffer through specific system requests and for informing the
system that it may once again collect data.

84

Under certain circumstances this scheme works perfectly well,
The advantage is that it is fast and requires as little system code
as one could have and still operate in a time-shared fashion. The
disadvantage is that it uses a lot of space. For example, although
the user may get access to the computer on the average of every
three seconds, he may occasionally be kept off for twice that long.
If each data point is three computer words long, for the two
coordinate axes plus a word of control information, and the input
device generates data once per millisecond, then 18,000 words of
data will have been sent to the computer in the six seconds between
his two turns at the machine. Further, even if that much data could
be saved by the system, if the user could process only five seconds
of input data during his time slice and could not declare the
buffer empty, then no data would be collected by the system while
he was waiting for his next turn.

For many uses of graphical input devices, the user will
produce only two or three seconds worth of data and will then wait
for a response from the computer. Also, one could equip the
computer with a lot of memory, and when a graphic input device
was being used, devote much of it solely to storing graphical input
data. These are not unreasonable solutions, for even complicated
curves can be drawn in two or three seconds, and a time-shared
computer always can use extra memory.

But the problem is not always so easily solved. In the
following paragraphs other ways the executive might handle the
input storage buffer will be considered.

4.3 What Ought To Be Provided

4.3.1 Feedback. - The first function the executive system
should provide to the user is feedback. If the user is writing
characters, 1f he is drawing pictures, or if he is manipulating
an image on the display, he must be able to see what he is drawing
before his program has had a chance to analyze his input. There
are certain times when one is interested solely in inputting two
dimensional information to the computer. For these uses, the
graphical tablet can be used without a display. The Sylvania
version of the tablet allows one to put a piece of paper on the
tablet and use a real pen to draw. However, most uses of
graphical input involve graphical output via a display, and it is
on the display that the feedback occurs.

The user program can interpret and deal with input data in
any way it sees fit. But for the few seconds between user turns
on the machine during which the system must provide the feedback,
a linear mapping from the surface of the tablet to the area of
the display reserved for tablet input is sufficient to show the
user what he is drawing. In the simplest case, the tablet
surface is mapped to the entire display face. This lets the user

85

"write" anywhere on the display. For the wand there is the
problem of representing three dimensions on a two dimensional
surface in such a way that the user can continue to draw.

Whatever the display mechanism, information must be put out
on the display that corresponds to the information presently in
the input storage buffer. This temporary information is deleted
from the screen at the same time that the user takes the data from
the input storage buffer. Since the coding necessary to put points
on a display is different from the coding of the points which the
tablet gives to the computer, a separate feedback buffer is needed.
This feedback buffer has points recorded in display format and is
put on the screen every time the user's display is refreshed.

The information in this feedback buffer is used only by the
system, never by the graphics users, and so the form of this infor-
mation can be adjusted to reflect characteristics of the display
being used. Such action is desirable because for a given display
some codings of this point information may take even more space
than the input storage buffer takes. Also, for a given display
some codings of this information may take longer than a single
refresh cycle to put on the screen. For example, if the display
has a constant time vector generator (one which takes the same
amount of time to draw any length vector), one might display the
stylus trace by vectors connecting every fifth data point rather
than every data point. This input S might temporarily
appear as ~ .

This scheme would save both display time and feedback buffer
space at a rather small cost in system compute time. If the
input buffering technique being used is to keep loading the buffer
until either it is full or the user is ready to process data, then
this scheme works well. The feedback buffer must contain informa-
tion for exactly one fifth the number of points that the input
storage buffer can contain. It will be seen later that it may be
desirable to have a much more complicated handling of graphical
input data.

4.3.2 Data Compression. - The technique described above can
be employed because of an important feature of graphical input
which distinguishes it from other high-speed input such as magnetic
tapes. There are only small differences between successive data
points compared to the possible difference between two random data
points. This feature of graphical input can also be used to save
space i1in the input storage buffer. For each data point, one must
store only the difference between it and the previous data point.
With the high sampling rates which these devices need in order to
be effective drawing tools, it may take only one half a computer
word to describe the difference in all the spatial coordinates
plus the device mode (e.g., the position of the pen point switch).

86

Thus, half a word might easily serve to hold information pre-
viously requiring three words: X coordinate, Y coordinate, mode.

Although optimizing space might not seem crucial in temporary
buffers, these are buffers which may run to 10,000 or more words,
and which, by their real-time requirements, must probably remain
in physical memory. Therefore, space savings by a factor of 6, 4,
or even 2 is worth considering. It does however take computer
time to effect this space savings, but one other fact settles the
situation in favor of using this simple form of data compression.
For drawing, the graphical input device user is himself primarily
interested in relative differences, and he would have to compute
the differences if the executive system did not.

There is one other function that the executive system can
perform on all the data points which early use of the graphical
input tablet has demonstrated is valuable (ref. 12 page 8). This
is averaging each data point with the previous several data points
before recording it. This has the double effect of reducing the
slight jitter one has while drawing and of minimizing the impor-
tance of hooks at the beginning and end of lines.

4.4 What Might Be Provided

4,4,1 General. - There are three areas in which the
executive system might reasonably perform functions which could
be performed by the user when he has control of the central
processor. Whether or not these are actually done by the executive
depends on two things. First, the amount of time the systems
programmers are willing to spend making the graphical devices
convenient to use. Second, the extent to which the executive
system is willing to give extra time and access benefits to the
graphical device user under time sharing. A poorly supported
graphical input device will be practically unusable in a time-
sharing system. As long as these devices promise to aid in
problem solving, it is false economy to oblige users to work from
the less demanding teletypes. And lack of software support is an
effective way of denying access to these devices.

The types of functions which the system offers to perform
for the user are functions which it appears all graphical input
device users will want and would have to do for themselves. It
should be true that there is some over-all savings (in space or
time) by having the executive system perform the operation on
its time rather than have the user do it. Thus, data averaging
is something which will be done by all users. Furthermore, it
would cost each user a pass through the data to do the averaging,
but it can be done by the system while the data point is being
stored away.

87

The three areas are (1) more complicated data reduction,
(2) more complicated buffering to permit continuous input, (3)
mode analysis.

4.4,2 Data Reduction. - The data reduction which the
executive system might perform on the data points from a graphical
input device may involve reducing the precision of the data and/
or reducing the quantity of the data.

If the data from the device has more bits of accuracy than
the user needs, he can perhaps save space in the computer and
save time during his own data analysis by requesting that the
precision of the data be reduced. This is equivalent to dividing
the range of data into discrete areas. Reduction of precision
can be done on each data point as the point is received by the
computer. Throughout this section the four data points

(18,15) (27,36) (29,70) (15,68)

corresponding to four successive X,Y coordinate pairs from a
graphical input tablet will be used as an example. If the user
requests that his input data be reduced in precision by a factor
of 10 in the X dimension and 5 in the Y dimension then the result-
ing data points are (10,15) (20,35) (20,70) (10,65).

Here one must realize that there is another dimension beside
X and Y which is being recorded implicitly. This is the dimension
of time. In the analysis of data from graphical input devices
time can be as important a dimension as any of the spatial dimen-
sions. It need not always be true that spatial coordinates are
measured and recorded, while time serves as the metered dimension
whose value is known implicitly. For example, one records the
times when a racer completes each lap of a race, and one can
conceive of computer controlled devices which are metered along
some other dimension than time.

A reduction in precision along the metered dimension simply
involves recording only every Nth data point. For many purposes,
such as drawing straight lines or pointing instead of drawing, the
data rate of the graphical tablet is higher than necessary, and a
reduction in the precision-along the time dimension will certainly
save computer space and computer time for both the executive
system and the user. 1In the example of this section a reduction
by a factor of two in the precision on the metered dimension
results in the data points (18,15) (29,70).

The precision could be reduced on both the measured dimen-
sions and the metered dimension giving data points (10,15) (20,70).
Furthermore, reducing the precision of the data may be done when-
ever the gquantity of the data is being reduced.

88

Reduction in the guantity of data is more complicated, and it
will be the topic of the rest of this section. This reduction
involves selectively discarding data according to user supplied
specifications. The reduction must be applicable at the time the
data point enters the computer, and it must not require any search-
ing back through previous data. What we are looking for is an
indication that some data is redundant. But we must know this
before doing any real analysis of the data. The single general
criterion which leads to such reduction is whether the present
data point is sufficiently close to the previous recorded data
point to be partially or totally disregarded.

The actual numbers which determine whether one data point is
close to another must be supplied by the user, but there are
various ways in which this type of reduction can be applied. It
may be that a data point is close enough to the last recorded
data point to be disregarded if the difference between their wvalues
in a given single one of the measured dimensions is smaller than a
user supplied number, or the two points may have to be close along
a combination of the dimensions. For each of these two situations
the data point can either be disregarded completely or its value
along the other dimensions can be recorded. These four situations
will be treated in the following paragraphs. When data points are
occasionally being discarded completely, care must be taken not
to lose the value of the non-discarded points along the metered
and implicitly recorded dimension. Specifically, this means that
a count must be maintained of the number of data points in a row
that have been discarded completely. This count is put into the
input storage buffer preceding the next data point that is
recorded there.

The first situation is using a single measured dimension to
invoke the data reduction and recording all other dimensions.
Here each data point is compared with the previous recorded data
point along the chosen dimension, say X coordinate to X coordinate.
If the difference is less than some value previously supplied by
the user, then only the values along the other dimensions are
recorded. In the example of this section if 10 in the X dimension
were the criterion then the data recorded would be
(18,15) (,36) (29,70) (15,68). That is, the X value of point
two was sufficiently close to the X value of point one to warrant
not recording it. Had 15 along the X dimension been the criterion,
the data recorded would have been (18,15) (,36) (,70) (,68). 1In
the input storage buffer, a reduced data point should take less
space to record. Of course some mark must be used in the buffer
to indicate that the present point is a reduced one. As
mentioned above, this form of data reduction could be applied to
data whose precision had already been reduced.

89

The second situation holds if it is decided to totally
disregard points which are sufficiently close. In this case,
the system will put a count of discarded points be?ween recorded
points. For the example in the middle of the previous paragraph
the recorded data would be (18,15) 1 (29,70) (15,68). For the
example at the end of that paragraph the recorded_data would be
(18,15) 3. It is anticipated that these counts w1ll.often be much
higher. This is apparent if one considers that holding a graph-
ical input stylus stationary for just a few seconds will generate
thousands of data points all of which are almost identical. Once
again, this reduction can be applied tc points of reduced
precision.

For situations three and four, closeness along some com-
bination of measured dimensions is what determines redundancy.
The question which must be answered is what do we mean by com-
bination. It may be closeness along at least one of the chosen
dimensions; it may be closeness along all of the chosen dimen-
sions; it may be closeness according to some function of the
chosen dimensions.

Both of the first two can easily be provided by the system.
Specification by the user is simply a critical value for each
dimension being tested and an indication of whether the logical
results of the tests are to be OR'ed or AND'ed. If in our example
the critical X value is 5, the critical Y value is 5, and the
results are to be OR'ed, the recorded data is (18,15) (27,36)
(,) (15,68).* Had there been a Z dimension, its value would have
been recorded in all four data points. Also had the fourth data
point been (15,33), then the recorded data would have been
(18,15) (27,36) (,) (,) with separate recordings for both the
third and fourth points. If the results of the closeness tests
were to have been AND'ed together, then none of the data points
would have been partially disregarded. If instead of only
partially discarding redundant data points as has been done so
far in this paragraph, we totally discard them, then the first
OR example is recorded as (18,15) (27,36) 1 (15,68); the second
OR example is (18,15) (27,36) 2; the AND example still has no
points discarded. This last reduction, with equal critical
values on all measured dimensions, the results AND'ed together,
and redundant points totally discarded, has a simple geometric
representation. Imagine a square around the first data point
received from a graphical input tablet. As long as the tip of
the stylus remains within that square the data points are simply
counted. When the stylus moves out of the square, a new X,Y
coordinate pair is recorded and a new square is imagined.

*Note that point four is sufficiently close to point three but
point three is not recorded on the chosen dimensions.

90

The third possibility mentioned above about a combination
of dimensions is closeness along some function of the dimen-
sions. Implementation within the executive of such data reduc-
tion is reasonable if many users will be taking advantage of it.
The percent of users which constitutes "many" depends somewhat
on the difficulty of the implementation and hence the burden that
the executive system and, indirectly, all the users have to
support for the existence of any particular executive function.
With present devices and applications, no such data reduction
function of multiple measured dimensions belongs in the executive
of a general purpose time-sharing system. An example of a
function which is easy to implement but few people would use is
one which lets AND and OR and parentheses be used in the specifi-
cation. Closeness could then be defined as some expression
such as

(AX < 10 OR AY < 15) AND AZ £ 15

An example of a function which more people would use but which is
much harder (in the overhead sense) to implement, is that two
two-dimensional points (Xl,Yl) and(Xz,Yz) are close whenever

2 2
V/sz—xl) + (YZ—Yl)

is less than some user supplied value. This computation defines
closeness as a circle around (X,Y) similar to the square used
earlier. Only if almost all the graphical input device users of
the system were going to use this technigque would it be put into
the executive.

There is a degenerate case of data reduction. It is the total
elimination of one of the dimensions. On a measured dimension it
can be done by reducing the precision of that dimension to zero.
However, if such reduction is going to happen often, either because
one drawing device is going to be used in lieu of another drawing
device of fewer dimensions (e.g., a wand to simulate a tablet) or
because some general purpose device which functions as a multi-
dimensional graphical device is often run at less than maximum
capability, then the supervisor could easily eliminate that
coordinate during input and shorten the vector representing each
input point by one unit.

One can also disregard the value of the metered dimension
but still maintain the sequential order of the data points by not
counting points which are totally discarded due to the other forms
of data reduction. The effect of this scheme with the drawing
devices is to record where the stylus was but not how long it was
there. This method of recording data may be quite sufficient for
some graphical input device applications.

91

4.4.3 Improved Buffering. - There are three ways in which
more sophisticated buffer control can be usefully employed. The
first is a simple change to the feedback buffer. The second is a
radical change to the input storage buffer and then by necessity
to the feedback buffer. The third is a change in the method of
reading the input storage buffer.

First is the feedback buffer. This change is applying the
data reduction principles of the previous section to that buffer.
The buffer provides vital feedback to the user while he is draw-
ing but before the input stream has reached his program for
analysis. We have already noted that there is no need to main-
tain the accuracy in the feedback buffer that the system maintains
in the input storage buffer. In fact, the system designers can
choose just when two successive data points are sufficiently
close to one another that displaying the second of them for the
few seconds will not be of any benefit to the user. This method
of data reduction in the feedback buffer shows what is being
drawn as an evenly spaced dotted curve. This is preferable to
displaying every Nth point, which would produce heavy patches
of light at corners where one draws slowly, and only occasional
dots in the middle of lines where one draws rapidly.*

The decision as to whether to spend system time doing this
reduction for the feedback buffer depends solely on the character-
istics of the display hardware. If the display has a relative dot
function such that information which is going into the feedback
buffer takes little space to record and little time to display,
then data reduction is not warranted. But if the feedback buffer
takes a lot of memory, or if displaying the buffer taxes the
capabilities of the display, causing flicker in the rest of the
picture, then data reduction is worthwhile.

The second change to the buffers is more complicated. During
normal operation device input information is appended to the bottom
of the input storage buffer at regular intervals by the executive

*One counter example is a physiological test in which one is
required to hold the device as steady as possible and in which

the brightness (due to multiple points) on the screen provides

the feedback. Precise instantaneous feedback is necessary. The
user should be able to turn off all special functions provided

by the executive system as long as the system can somehow limit
the overhead in time and space incurred by any one user. One does
not, however, have difficulty in finding an example so demanding
of computer resources that time sharing is contra-indicated.

92

and information is depleted in large chunks from the top of the

buffer at irregular intervals by the user. If the user gets to

run the machine on the average of every three seconds he must be
able to process at least three seconds of input while he is ac-

tive. With this method of buffer control, input must stop when

the buffer is full and not begin again until the buffer has been
completely emptied.

But it would be convenient, and for some applications it
might be vital,if input could be continuous even allowing for the
vagaries of time sharing. The method to use is a wrap-around
input storage buffer with separate pointers to indicate the next
location to be written into by the executive and the next location
to be read from by the user. The word in an input storage buffer
of length N to be read by the user or written by the system after
word N is word 1, although when the user asks the system for
data from the buffer he gets it in its proper order. The system
will not record data in the buffer if the write pointer catches up
to the read pointer, and it will not transmit data from the
buffer if the read pointer catches up to the write pointer. As
long as the buffer is able to hold, say, twice as much input as
normally arrives between two successive user opportunities at
the central processor, input will be continuous and can proceed
simultaneously with analysis. The user can take data from the
buffer at whatever rate he chooses. This is easier for the user
and will improve his interactive response as well.

A wrap-around input storage buffer can only function with a
wrap-around feedback buffer. And unless the nature of the data
in both buffers matches in format, deleting code from the feed-
back buffer takes additional information in the input buffer.
There must be pointers from the latter buffer into the former to
indicate how much code can be deleted.

Finally, there is a change that can be made in the way the input

storage buffer is read. Because the storage of raw data takes a
lot of computer space and because the user may deduce that while
he can analyze some of the data which he has read from the buffer
he cannot yet analyze the rest of it, the user may find it con-
venient to separate the two functions of reading information from
the buffer and deleting information from the buffer. For example,
a user might read 200 words from the buffer, discover that he
could process the first 150 words but did not yet have enough
input data to process the last 50, and delete only 150 words.
Then the next time the user read information from the buffer,

the first 50 words he read would be the ones which he did not
delete.

4.4.4 Mode Analysis. - The third major area in which the
time-sharing system executive might assist the graphical input

93

device user is called mode analysis. Beside the coordinate infor-
mation available from graphical input devices, most such devices
have just a little more information which will usually be inter-
preted as control information by the user. Most standard light
pens have a spring loaded two position switch. The common use of
this switch is that the pen reacts, in either a software or hard-
ware sense, to light only if the switch is pressed. Both the
Sylvania and the Bolt, Beranek, and Newman commercially available
versions of the graphical input tablet have a pair of two position
markers which are read into the computer along with the X and Y
information and provide some slight indication of the distance of
the stylus from the surface of the tablet. One simple use of this
Z information is to disregard data if the stylus is not directly
on the tablet.

These few extra bits of information are often used to indicate
that certain data is to be disregarded and the executive system can
work to both its and the user's advantages by letting these bits
determine the general mode in which the device will operate. No
such information is derivable by the system from simple analysis
of the basic coordinate data, thus only these mode bits are singled
out for special treatment. The user is permitted to specify what
he would like the system to do for various configurations of these
bits.

Broadly looking at the role of the executive system with
regard to graphical input devices, it accepts data from the device
at a certain rate, does some data reduction on the data, records
it in an input storage buffer, records it in a feedback buffer,
and transmits it to the user.

First of all, the data input rate can be different for
different settings of the one, two, or three bits which constitute
the mode value. Typically, one might not be very interested in
input values unless the stylus is against the tablet. Therefore,
one might reduce the input rate to ten points a second until the
mode value indicated that the stylus was once again down. Even
though two bits of mode information means there are four differ-
ent mode values, a user could be interested in just one of the
bits. He might also set one input rate for mode value equal 0,

a second rate for mode value equal either 1 or 3, and a third
rate for mode value equal 2.

Similarly, one might wish to change data reduction techniques
when the mode changed. The test for mode is made as each point
enters the computer and the change in data reduction can be made
at that time. Since the mode value is recorded in the input
storage buffer along with the coordinate values, the user will
know when the change occurred.

94

Third, perhaps information should be recorded in the input
storage buffer only for certain values of the mode bits. As
usual, a count is maintained and each time a point is recorded
in the input buffer, the total number of non-recorded points
since the last recorded one is stored with it. With two reasons
for disregarding points, closeness and mode value, the system
may keep and record two counts instead of one.

It is even easier to apply mode value analysis to the fourth
system function, recording in the feedback buffer, since there is
no necessity for counting unrecorded points. A simple test for
appropriate mode value is made before the point is put into the
buffer.

The mode value can also affect the fifth system function by
determining when the input storage buffer is transmitted to the
user. The program which uses a graphical input device will often
be in a situation of input wait, that is, waiting for a peripheral
device to complete input before processing can continue. The
graphical device input wait is different from input wait for, say,
exactly 100 words from a magnetic tape, because in general only
the user can tell whether he has enough input data from the
graphical device to analyze that data. However, if the mode value
provides the clue that sufficient data is in (e.g., data will be
processed as soon as the stylus is lifted from the tablet), then
the user can put himself into input wait and the executive system
can "awaken" him as soon as the proper mode value appears in the
input stream (or as soon as either buffer is full). Thus the
user will be scheduled to run only when he is sure he has some
computing he can do.

V. EXPANSION AND CONTRACTION OF GRAPHICAL PROGRAM ANALYSIS
5.1 More Powerful Hardware and Software

GRAPE is a display oriented system for higher level language
program analysis. It is worth trying to anticipate developments
over the next few years in computer displays and in computer
languages to see what effect they might have on the GRAPE method
of program analysis. We shall first investigate whether improve-
ments to the hardware could or should affect GRAPE. These
improvements are ones which change the user's view of displays,
not simply improvements to the display circuitry.

95

The enhancement to displays in which research is currently
being done is the addition of the third spatial dimension (Van Dam's
work at Brown University and refs. 13, 14).* While this work is of
interest in many graphics areas, it does not appear to be useful in
program analysis. An exception to this might be in looking at three-
dimensional data structures. Since "real" objects are all
three-dimensional, such capability is valuable in display work.
However computer program data structures can be any number of
dimensions, therefore this use of three-dimensional displays
is limited. A discussion of the failure of an attempt to use
three-dimensional displays to view four-dimensional objects can
be found in reference 15. The ability to have some information
coded in the third spatial dimension is valuable, but this can
be done using display features such as variable intensity, winking,
or multiple colors, and does not demand a true third dimension

which is as complex as the two spatial dimensions of the display
face.

A computer program is one dimensional in that it consists of
instructions to a computer to be executed serially. The standard
way of writing programs takes a second dimension, with statements
written horizontally and aligned vertically. Programs are always
written in two dimensions, such as on a piece of paper. The
languages themselves are designed to be written in two dimensions.
The third spatial dimension is not used in writing computer
programs.

A program structure such as
IF X « 0 do A
IF X = 0 do B
IF X > 0 do C
does not add a third dimension of time because no true simultaneity
of operation is implied. The dimension of time is used in writing
computer programs only to determine the ordering of instructions
in the first spatial dimension.
One could consider using the third spatial dimension to

represent the time dimension while the program is operating.
Rather than modifying a single two dimensional plane, every

*

The ability to draw patches of light, rather than just beams, is
also being investigated, but this is not of value to a display
system concerned primarily with characters.

96

execution cycle could add a planar picture in front of the
previous planes. But people do not work this way. Depth infor-
mation cannot be sorted out the way lateral information can.
Individuals do not choose to look at objects which are set up on
the visual Z axis if they could instead be set up in a single
plane at a constant distance from the eye. Both the obstruction
of far objects by near objects and the required muscular change
of eye focal depth are causes of this. The conclusion is that
three dimensional displays do not offer an improvement in the
techniques of computer program analysis.

We next investigate improvements in the languages used for pro-
gramming computers. Again improvements refer to the user's view of
these languages, not the methods by which they are compiled. Flow-
chart programming, that is specifying a program by a flowchart rather
than by a serial list of written instructions, has been discussed
and partially implemented in the past few years (Project Grail at
Rand Corporation and refs. 16, 17). The general use of flowcharts
by programmers could indicate that flowcharts are a more natural way
to write programs than are lists of instructions. Flowchart pro-
gramming is similar to other higher level languages in that from
the user's side it is computer independent, and the precise method
of implementation -of each flowchart instruction is not of direct
interest to someone doing program analysis. The differences bet-~
ween flowcharts and the languages we have been discussing are that
some of the syntax of the flowchart language, especially control
functions, is in the form of shapes rather than characters, and
that the language is two dimensional in representation. Within
nodes of a flowchart, one will continue to write expressions and
-other instructions which have no two dimensional analogue.

This improvement in programming notation does not alter the
type of information a flowchart programmer would want Ior program
analysis, and many of the ideas of GRAPE would be directly

usable. Visually presented timed execution of the source flow-
chart and extensive control over the rate of execution are still
important concepts. So is the idea of condensing a collection of

nodes to increase speed of execution and improve visibility. One
will certainly be interested in inserting break points, saving
the present flowchart, and restarting the execution of the flow-
chart.

The displaying of the operating flowchart is seriously
complicated by the fact that the program extends in two dimensions.
One simple solution is to permit rolling in both dimensions much
as one might scan a map. However, distances need not be preserved
on a flowchart (or on any "graph") the way they must be on a map,
and moving nodes around so that the maximum amount of information
is on the screen at any one time should be done by the system.
Since the density of code per square inch is not normally as high
in a flowchart as it is in a linear program, 2zooming in and out

97

towards the program by changing the size of characters and the
closeness of nodes would be possible. In fact this will
probably be necessary since condensing a set of nodes will be
natural to do only if all the nodes to be condensed are on the display
face at one time. When the program jumps to a node of the flow-
chart which is not on the screen, a decision will have to be made
as to what nodes of the flowchart should be displayed. Most
programmers are in the habit of drawing flowcharts from top to
bottom and left to right; therefore, putting the current node
near the top left is a good first guess. But clearly the display
techniques will not be easy to develop.

Since flowcharts are two dimensional, flowchart programming
will develop only where two dimensional input is available. The
problems of editing will probably already have been solved on such
a computer system. The primary difficulty in performing GRAPE
type analysis on flowchart programs will undoubtedly be the
display handling discussed above, but flowchart languages would
seem to have enough in common with other higher level languages
to make GRAPE useful in flowchart program analysis.

5.2 Less Powerful Hardware

5.2.1 Display, Light Pen, and Keyboard without Graphical
Tablet. - Reductions in the capability of the input/output equip-
ment and their effect on GRAPE will now be examined. The hard-
ware and software blocks necessary to run GRAPE as described in
Section II were outlined in 3.1. Certain of these features can
be eliminated, and a restructuring of the others defines a
system which still retains sufficient power to serve as the tool
for program analysis.

GRAPE shows exactly what the source program is doing as it
executes, as opposed, for example, to a scheme which only shows
which statement is executing. Therefore, it must understand each
step of the source program and must present this information to
the user; so both the properly constructed compiler and the execu-
tion phase of the system are necessary.

GRAPE is display oriented. Even though the material on the
display face is characters arranged in lines, no line printer
could produce the information, including context, which GRAPE
requires. The noise, the speed, and the movement of the paper
make any line printer unfeasible as a substitute. Certain hard
copy generators produce sheets of paper that contain all the
information which would be on a display face. Hundreds of sheets
of paper, each of which shows a new execution cycle, could
substitute for a "soft" display. But this approach overlooks the
fact that these devices actually are displays with additional
equipment added to produce the hard copy. Also, the fastest hard

98

copy generators take ten to thirty seconds to produce a picture.
Therefore, the display 1s necessary to GRAPE, and so is the
display support software.

However, the other major piece of hardware is not as vital
for GRAPE operations. The graphical input tablet is not yet a,
common device. Furthermore, the software support, including
character recognition, for this device in any particular computer
installation is time consuming both for the system programmers to
produce and for the run-time computer system to use. One should
investigate whether another input device can reasonably be sub-
stituted for the tablet. The input device regularly associated
with displays is the light pen. It is much less demanding of
central processor time to operate and is much more frequently
available than the graphical tablet.

The primary difference between the two input devices is that
the tablet is a drawing device and the pen is a pointing device.
Although the drawing of straight lines can be done with a light
pen and tracking cross, the light pen cannot be used to draw small
characters. However, it will have been seen that use of the
graphical tablet in source program execution, execution functions,
and some of the editing functions is strictly as a pointing device.
For changing characters in the source program code a keyboard, in
conjunction with a light pen, can be used.

Using the light pen as the major input device keeps the
user's attention and activity on the display face. Thus he is
still interacting directly with his program and not with an
intermediate system. Source program execution occurs as
described in 2.2. The same factors which led to the earlier
design of the speed control apply here. A speed line like the one
used in the implementation of Section III (Figure 19) is what is
needed. If possible, a mechanical structure should hold the pen
in position while the program is executing. Pens are normally
attached to the right side of displays and a speed control on the
left would interfere with the line numbers. As a result, this
control must be on the right. The speed control works just as
it did in Section II; moving the control to STOP or to and away
from STOP has the same effect that was described earlier.

On most light pens is a push button. Pressing that button
while the pen is at either end of the speed line causes a function
which was described earlier. At the fast end, all delay between
statements is eliminated. At the STOP end, a single cycle of
execution occurs. If there is no such button, the top of the
speed line must cause execution at the high speed. The slowest
continuous execution speed is slow enough that one could touch
it and then touch STOP to perform single cycle execution.

99

Functions are represented by messages on the screen as in
Figure 26. Touching a message with the light pen causes the
function to occur, just as it did with the graphical stylus.
Once again a single device is used for speed control and for
function control. For many of these messages, one or two line
numbers must also be touched. If a new function is touched
before all the line numbers for an old function have been input
then the old function is not performed. Feedback for these
functions which need line numbers is provided by brightening the
function until the line numbers have been touched.

When the source program is executing, none of the light pen
messages are displayed. When the speed is set to STOP, the top
of the screen looks like Figure 26. RESTART, SAVE, and TRASH are
the same as described in Section II. ROLL is as in Section II, ex-
cept since the light pen is not fine enough to allow multiple
rolling speeds, ROLL is a constant two lines per second. PAGE,
as described in 3.2,allows rapid movement through a program.
Touching — , [, or O followed by one, one, or two line
numbers respectively institutes the function. If the line which
is touched following [~ or [J already has that function, then the
function is removed from the line.

The last three messages involve the keyboard. With these
either the carriage return or the line feed is used to terminate
keyboard input. If one touches VARIABLES and then touches a
presently displayed variable, it will be removed from the screen.
If one touches VARIABLES and then types the name of a source
program variable, it will be displayed. If after typing the name
of a variable one also types a value, the variable is set to the
value. After touching REFERENCES one can type the name of a
variable to see all references to that variable, a statement label
to see all references to that statement, or a carriage return to
see the unused areas of the program. Touching EDIT followed by a
line number allows one to edit that line from the keyboard. The
intraline editing instructions from QED (ref. 18), the SDS
940 time sharing system editor, are a good set of editing instruc-
tions. QED is based on TECO, which is a display editor designed
at the Massachusetts Institute of Technology. Its instructions
are appropriate for fast editing where feedback from a display is
available. Touching EDIT followed by two line numbers moves the
first line after the second line. However, when the two are
successive lines, then space is opened to permit inserting a line
from the keyboard.

GRAPE, in this configuration, preserves the notions of
complete feedback in the source program language, largest possible
window into the program, retention of the display as the primary
area of interest, and extensive control over execution speed. The
appearance of an intervening "system" is kept to a minimum although

100

RESTART SAVE TRASH VARIABLES REFERENCES

— — O EDIT tpaAGE | $ ROLL §

Figure 26. Display Messages When the Speed is at STOP

1ol

the sense of interacting directly with the program is slightly
reduced. Also the operating instructions which must be mem-

orized have increased.

5.2.2 Keyboard and Display without Light Pen. - The next
reduction in hardware capability 1s eliminating the light pen.
All source program execution and most functions work as before,
but now all input will come from the keyboard. The disadvantages
are a general transfer of attention to the keyboard and away from
the program itself, and the clear intervention of a "system”
between user and program. In particular, the control over execu-
tion speed is moved to the keyboard. The speed line is still in
the lower right of the display and looks like Figure 27. Typing
a digit from 0 to 8 brightens that section of the speed line and
runs the source program at the appropriate speed. The 99 is used
to remind the user that it is the extra high speed which removes
all delay from execution. Single cycle execution is still natural.
When the speed is STOP (0), typing 0 executes one cycle.

Keyboard input always brings out the problem that a single
character or a short code is not meaningful enough to keep the
inexperienced user happy, but a mnemonic code of four or five
characters is frustrating to the expert who must type these codes
over and over. When messages appear on the screen each message
is accompanied by a letter which is the code for the function, as
in Figure 28. One types the function code followed by line
numbers, variable names, values, or editing instructions as
appropriate. Carriage return or line feed is still used to termin-
ate input of an indefinite length such as a new line of code,
though no terminator is used in conjunction with the speed con-
trol or with functions such as —s» whose arguments are always the
same number of characters.

Two functions which used information from the light pen have
been slightly modified. First, if the variable name typed when
VARIABLES is instituted is already on the screen, then it is
removed from the screen. Second, rolling is terminated by a
carriage return or line feed.

As with all versions of GRAPE, there is no easy way to
accidently destroy several minutes of work. This version still
gives a large window into the operation of a program written in
a higher level language and still gives the user a feeling of
"hands on" program analysis.

5.2.3 Weaker Refresh Display. - The refresh display used
by GRAPE does not need many special hardware features. It needs
the capability of displaying several hundred characters without
serious flicker, yet have a moderately fast phosphor so that
changes on the display do not leave smears.

102

99

STOP 0

FPigure 27. Speed Control

103

e ' 2

RESTART SAVE TRASH VARIABLES REFERENCES
A B C D E
— — O EDIT } pace }roLL
F G H I J K L M

Figure 28. Display Messages When the Speed is at STOP

104

The mode of production of the characters, whether hardware or
software, is not important. Dot capability is necessary only for
the feedback associated with the graphical tablets, and one is
unlikely ever to find a tablet connected to a display that does
not produce dots. If beam intensity variation is not available,
brightening some of the program code can be done perfectly well
by overwriting the same characters twice or three times each
refresh cycle. Other niceties, such as the use of the 3
character, can easily be avoided if necessary. The standard
display feature of random positioning, as opposed to being obliged
to write a single stream of characters which starts at the top
left of the screen and ends at the bottom right, is exceedingly
useful and is necessary if overwriting is to be done. Display
subroutining is not necessary in GRAPE and neither is any curve
or vector generator.

5.2.4 Remote (Low Speed) Storage Display. - The most drastic
reduction to be considered in the capability of the display is the
substitution of a remote storage display for the directly connect-
ed refresh display. While the refresh display is completely re-
painted thirty or more times per second and can be changed just as
rapidly, the storage display collects and retains information until
it is completely erased and the process restarted. Although some
refresh displays are fast enough to produce a typical GRAPE
picture in one or two seconds, the use of storage displays which
is becoming increasingly common is as low cost computer terminals
at the end of telephone lines. Standard telephone lines transmit
information at such a rate that it would take ten seconds to
produce a page of program code. Thus the standard mode of GRAPE
program execution is not suitable for remote storage displays.
However, these devices provide visual information remotely from
a time shared computer. They are inexpensive and they do not
make the computational demand on the computer that a refresh
display does. The growing and well deserved popularity of storage
displays requires that we consider a way to use them for program
analysis. ’

Keyboard operation for speed control and the institution of
execution and editing functions are the same as with the refresh
display and keyboard. But for the display of source program
execution certain restrictions are apparent. First, it must be
possible to indicate the execution of many statements without
rewriting the display. Second, displaying as many lines as
possible is advantageous since transferring to a new page of
program code demands rewriting the display. Third, interaction
will be from the keyboard as it was in 5.2.2, but not every key-
board command should cause a rewrite.

Because this is a storage display each statement execution
will have to add to the contents of the display face. Indicating

105

the results of each statement directly on the statement or
directly beside the statement will not work for several reasons.
When execution is stopped there is no way for the user to tell
what statement was last executing. Also some statements need

a lot more room than others to display execution. Finally, a
statement in a loop could be run dozens of times before one
wanted to rewrite the display. Nor can the program code be
shifted down one line during the execution of expressions.
Therefore, a fairly large display face is necessary to display
all the code plus additional material for every execution cycle.
The Tektronix cathode ray tube used in several commercially avail-
able displays (ref. 19) is 8 1/4"™ by 6 3/8" and will hold four
thousand legible characters.

Since the results of execution cannot be displayed near the
statement being executed without greatly reducing the number of
statements that can be displayed, and since it is desirable to
display as many statements as possible, the display face is
arranged with the source statements packed in tightly at the top
of the screen. The results of execution are indicated at the
bottom of the screen. To perform the packing, unnecessary spaces
are removed from the displayed code. The code is arranged in
columns as shown in Figure 29 with the statement continuations
inserted automatically by the system. The width of each column
ensures that most of the executable statements in the particular
higher level language will fit on one line commensurate with the
number of characters which can be printed on one horizontal line
of the display. If three columns of code can be displayed on the
screen, then sixty source program statements could be displayed on
the top third of the screen.

Just below the displayed statements is a status line. The
character on this line indicates whether execution is presently
occurring: G for GO and S for STOP. When the status changes the
0ld character is blocked out and a new one is written. Thus if
one starts execution by typing 4 (for speed 4), then stops it by
typing O, the status line would go

from STATUS: S
to STATUS: & G
to STATUS: & & S

A similar method is used for displayed variables. The first
variable requested goes on the bottom line of the screen. When-
ever its value changes, the old value is blocked out and the new
value is written. A second requested variable is displayed on
the second from bottom line. If a variable changes enough times
to fill a line on the display, then the variable name itself is
blocked out and the next available line at the bottom of the
screen is used to continue display of that variable.

106

-
103 — 121 147 O
104 122 160 ——
105 X 161 —_—
Q/ MU T
— —— — e X
120 146 e
STATUS: S888%
. Xx% #8 %%9 ExHExx? xX3 Ixkx k28 %@
zﬁﬁgfé% ¥2% RROM k2% 38 112 PAUSE
CONDENSE 111 122
START 111

HEIGHT: 2000 04

WEIGHT: 2%k#%

-

2XBX XA 4383183

Figure 29.

Display Setup

107

Height : 19
Weight : 36

KEXEKX : XX AR XX

Below the status line is the area for the display of state-
ment executions. The display for each statement is blocked
out when the following statement is displayed. Display of execu-
tion goes across the screen from left to right and then starts
on the left of the next line. The material displayed is the line
number followed by the same temporary code that was described in
Section II. Understanding the execution will take a little effort
on the user's part because the results of execution are displayed
at some distance from the source code and because there is no
vertical alignment during expression evaluation. When the display
of execution cycles fills the open area then the display is
rewritten. The size of the open area depends on the number of
variables being displayed, and it might be that a program change
to a displayed variable is what fills up the screen and causes
the display rewrite.

The open area in the center of the screen is also used when
execution or editing functions are input from the keyboard. The
display is not rewritten after each function is typed. Rather
they are listed in the open area as they are typed. The functions
all occur when the user requests that they occur or when the
open area is filled. One might type

DELETE 30
CONDENSE 12 50
START 10

before requesting that these functions take effect. In the above
example, lines 12, 50, 10 refer to the line numbers displayed
when the instructions were typed, even though these numbers

might be changed by earlier instructions in the list. The way to
request the actual occurrence of the functions in the list is
what one might expect: type 0 for single cycle execution.

In the interest of saving space and thus on the storage dis-
play saving time, all statements which contain expressions will start

108

out condensed. Also, no messages are displayed on the screen
when execution is stopped. The user must keep a list of the
functions and their abbreviations or he must memorize them.
Figure 28 is appropriate for the storage display as well as for
the refresh display with keyboard input only, except for one set
of changes. ROLL no longer exists and the request to PAGE may
optionally be followed by the number of pages to be turned in a
single rewrite. PAGE replaces ROLL during display output and
during the display of multi-valued arrays. The abbreviations
from Figure 28 are what the user types but the full words appear
on the screen.

The sacrifices which have been made in order to save display
rewrite time cause a user some difficulty in that the print is
small and the feedback occurs away from the statement. Also, a
user might refrain from making some changes because of the time
it takes to rewrite the screen. What GRAPE on the remote storage
display retains is the idea of the user seeing his program execute
and getting a lot of visual feedback in the language of the
source program. His window into the program remains large and his
control over the execution speed is still extensive. Because the
number of separate GRAPE functions is low, it remains an easy
system to learn and to use. All three types of program analysis:
teaching, debugging, and understanding, are enchanced by the
system.

5.3 Conclusions

The design for a system of graphical aids for computer
program analysis has been thoroughly worked out. Many of the
features have been redesigned several times in order that the
final system be as invisible to the user, that is as simple and
natural to use, as possible while remaining a complete system
with no major desirable features left out.

The rapid increase in the use of computer driven displays
and the continued popularity of higher level languages ensures
the usefulness of such a system. This system can be used with
a wide variety of graphical input/output devices.

That editing information on a display face could be done with
a graphical input tablet, a light pen and keyboard, or with a
keyboard alone, has already been amply demonstrated. The
particular gquestions which had to be answered by an implementation
were whether the dynamic execution of the source program on the
display screen did indeed contribute to an understanding of the
program and whether the control over execution as provided by the
execution functions was sufficiently broad and sufficiently
natural. The reactions of the fifty or so people who used or were
exposed to the GRAPE system were favorable. GRAPE seems to provide
the capabilities one would like when at a desk simulating the

109

operation of a computer, whether the program is one's own or
another's, or whether one is an expert or a novice programmer.

Turning GRAPE into a production system at a particular
computer installation involves programming according to the
description in Section II. It may also involve two other
programming efforts. First is the preparation of the compiler
for the higher level language. Today's compilers work only on
the single computer for which they were written. And few machines
already have incremental compilers for higher level languages.
Even if a compiler already exists, GRAPE wants to use it in a
special way in order to get both the intermediate code and the
final code. This could involve partial rewriting of the
compiler.

The second programming effort which may be necessary is the
programming of the peripheral devices. Many computer installa-
tions which have graphical input/output devices do not yet have
suitable software support for them. Each user must write his own
input/output package. Although the requirements for this pack-
age are clear, learning to program a display can be almost as
time consuming as learning to program another computer.

Further research is warranted in the area of GRAPE and low
speed storage displays. An implementation is necessary before
one can be sure of the display techniques to be used with that
device. One could, for example, pre-run a section of code to
determine how much of the source program should be put on the
screen each time it is rewritten. Further research is also
warranted in the application of graphical aids during program
execution to the concept of flowchart programming.

110

10.

11.

12.

13.

REFERENCES

QUIKTRAN Reference Manual: International Business Machines
Corp., Form J20-0017, San Jose, California, 1967.

Lewin, Morton H.: An Introduction to Computer Graphic
Terminals. Proc. IEEE, Vol. 55, pp. 1544-1552, 1967.

Davis, M. R.; and Ellis, T. O.: The RAND Tablet: A Man-
machine Communication Device. Proc. Fall Joint Computer
Conference, Vol. 26, pp. 325-331, 1964.

Roberts, Lawrence G.: The Lincoln Wand. Proc. Fall Joint
Computer Conference, Vol. 29, pp. 223-227, 1966.

Richards, Martin: BCPL Reference Manual. Massachusetts
Institute of Technology, Project MAC Memorandum M-352, 1968.

McCracken, Daniel D.: A Guide to Fortran IV Programming.
John Wiley and Sons, New York, 1967.

McCracken, Daniel D.: A Guide to Algol Programming. John
Wiley and Sons, New York, 1962.

Anderson, Robert H.: Syntax-Directed Recognition of Hand-
Printed Two-Dimensional Mathematics. Harvard University
Doctoral Thesis, 1968.

The Compatible Time-Sharing System, A Programmer's Guide.
Second Edition, Massachusetts Institute of Technology Press,
Cambridge, Mass., 1965.

Ide; Munson; Duda; Hurley; et al: "Session on Hand-Printed
Character Recognition." Proc. Fall Joint Computer Conference,
Vol. 33, pp. 1117-1161, 1968.

Corbato, F. J.; and Vyssotsky, V. A.: Introduction and Over-
view of the Multics System. Proc. Fall Joint Computer
Conference, Vol. 27, pp. 185-196, 1965.

Bernstein, M. I.: Hand-Printed Input for On-Line Systems.
Systems Development Corporation Report TM-3937, Santa Monica,
California, 1968.

Stotz, Robert: Man-Machine Console Facilities for Computer-

Aided Design. Proc. Spring Joint Computer Conference,
Vol. 23, pp. 323-328, 1963,

111

14.

15.

16.

17.

18.

19.

112

Sutherland, Ivan E.: A Head Mounted Three Dimensional Dis-
play. Proc. Fall Joint Computer Conference, Vol. 33,
pp. 757-764, 1968.

Noll, A. Michael: A Computer Technigque for Displaying n-
Dimensional Hyperobjects. Communications of the Association
for Computing Machinery, Vol. 10, pp. 469-473, 1967.

Sutherland, William R.: The On-Line Graphical Specification
of Computer Procedures. Massachusetts Institute of Techno-
logy Doctoral Thesis, 1966.

Christensen, C.: An Example of the Manipulation of Directed
Graphs in the AMBIT/G Programming Language. Proc. Symposium
on Interactive Systems for Experimental Applied Mathematics,
Washington, D. C., 1967.

QED Reference Manual. Dial-Data, Inc., Newton, Massachusetts,
1968.

Advanced Remote Display Station Reference Manual. Computer
Displays Inc., Waltham, Massachusetts, 1968.

GENERAL REFERENCES

Brady, Paul T.: Writing an Online [Machine Languagel
Debugging Program for the Experienced User. Communications
of the Association for Computing Machinery, Vol. 11,

pp. 423-427, 1968.

Evans, T. G.; and Darley, D. L.: On-Line Debugging Tech-
niques: A Survey. Proc. Fall Joint Computer Conference,
Vol. 29, pp. 37-49, 1966.

Lampson, Butler W.: Interactive Machine Language Program-
ming. Proc. Fall Joint Computer Conference, Vol. 27,
pp. 473-481, 1965.

Schwartz, Jules I.: Online Programming. Communications of
the Association for Computing Machinery, Vol. 9, pp.
199-~203, 1966.

Stockham, Thomas G.: Some Methods of Graphical Debugging.
Proc. IBM Scientific Computing Symposium on Man-Machine
Communication, Watson Research Center, Yorktown Heights,
New York, May, 1965.

NN N

X

X

X

X

X

X

APPENDIX A

Js» GREEN GRAPE

COMMON /TIDICOM/ LPNDIM,;LPNREGsBRIGHT s TNTON, INTOFF s CHRMOD, VECMOD 5
NLCRsLXROsLYRD4EXRINNSLXRBNDsLYRBON L YRIDOLXRIIISVIYOVIXN,

VDY50,VDX100,VIY5nN,VIYINO

COMMON /RUTCOM/ STPRUT sBRKPUT s ENDPUT 9 SPEED,BRKFLGsORGVAL sENDVAL »
ORGLNOsENDLNO3sORGSPDsENDSPDbUTTON(100) s SETDSP(30)

COMMON / INPCOM/ NUMST, INPUT(80) sSTUFF(200,11) .

COMMON /EXCOM/ J19J25J39J49IVIZsPLACEsDSPLN2SEXLINESGOTO(4)
CGOTO(953) 29PAUSE(4) sEND(4) sREAD(4) sWRITE(4) sNOLGT(9) s
YESLGT(9)sARTHIF(953)3VAR(36)sDSPVAR(S5)

COMMON /EDCOM/ K1+sK2sLINEL1sLINE23SCRNSZSsTYPE(200):POINT(200) s

VIZ (260}

COMMON /SUMCOM/ TEMP(3n) s SPACES(30) (STATE(20N54) sSTLABL(100) »
DBUF(200) 4LBUF{20n) 3 LETTER(41)

COMMON /OTHCOM/ TOTSTHPRESILNsCHARHT 4DSPLINs SCRNMX s TOPLINSOLDBUT o
BREAK(9) s SPDLINIR) s SQUARE (13),LINNUM{10OD)

COMMON /SUBCOM/SUBRET
COMMON /ARRCOM/ZARRAY (44205109

INITIALIZATION
CALL DSPATT
CALL DSPTRN(1)
CALL LPNSBLC 1)

CALL SETCON
CALL SETLET
CALL SETARR
CALL SETBUT
CALL INSERT

END

SUBROUTINE SETCON

CHARHT =64

IBRT=12

IRFG=8

IDIM=4

ICS1ZE=1024+2048

LPN=256

SCRNMX=10

SCRNSZ = 1

TOTST = 1

EXLINE = 1

SUBRET=1

Kl=1

K2=9999

LINE1=1

BRKFLG=0

TOPLIN=1

PRESLN=1

LPNDIM= ~20480+16+LPN+IDIM+ICSIZE
LPNREG= -20480+16+LPN+IREG+ICSIZE
BRIGHT= -20480+16+IBRT+ICSIZE
INTON= -20480+16+IDIM+ICSIZE
INTOFF= -20480+16+1CSI1ZE
CHRMOD= -14080

VECMOD= -14336

NLCR=2573

LXRO= -32767-1

LYRO= -28672

LXR100= LXRO+80

LXRB0OO= LXRO+770

LYRB0OO= LYRO+600

LYR300= LYR0O+900

LXR999= LXRO+820

VIYo= 5120

VIX0= 7168

VDY50= 4096+50

VDX100= 6144+1n0

113

114

41

42

43

30

0

0

0

440

450

VIY500= VIYO+50n0
ViYoon= vIYD+900
RETURN

END

SUBROUTINE SETLET
DO 410 1=65,90
LETTER (1-64)=1
DO 420 1=48,57
LETTER (I-21)=1
LETTER (37)=61
LETTFR (38)=32
LETTER (39)=43
LETTFR (40)=45
LETTER (41)=42
R=32#256

$=32

GOTO(1
END(Iy=T

DO 440 I=1,30
SPACES(I)=T

DO 450 [=1,9

NOLGT(I)=T

YESLGT(I)=T

DO 450 J=1,3
ARTHIF (1 ,0)=T

CGOTO(I 443=T
NOLGT(3)=40+4R

NOLGY (7)=41%#256+S
YESLGT{7)1=L{7)4R
YESLGT(8)=L{15)%256+S
YESLGT(91=L(201%#256+L (15}
READ(2)=R+L(18)
READ(3)=L(5}%256+L (1)
READ(4)=L{4)%256+5S
GOTO(2)=YESLGT (7}
GOTO(3)=YESLGT(8)
GOTO(4)=YESLGT(9)
WRITE(2)=R+L(23)
WRITE(3)=L(1B)%256+L(9)
WRITE(4)=L(20)%256+L(5)
PAUSE (2)=R+L (16}
PAUSE(3)=L(1)#256+L(21)
PAUSE{4)=L{19)%256+L(5)
END(2)=R+L(5)
END(3)=L{14)%#256+L(4)
CGOTO(651124415
CGOTO(752)=95+R
CGOTO(852)=24320
CGOTO(9,3)=24415
ARTHIF(551)=24415
ARTHIF(6-2)=95+R
ARTHIF(752)=24320
ARTHIF (84531224415
RETURN '

END

SUBROUTINE SETARR
DO 50 1=1,.30
VIZ{1)=0
TYPE(I =0
DBUF(1)=0
LBUF(I)=0
POINT(I)=n

DO 30 J=1.4
STATEtI-J)=0

DO 40 J=1,11

40
50

100

120

125

130

140

50

STUFF(Js1}=0
CONTINUE

DO 100 I=1,100
LINNUM(I)=0
BUTTON(I)=0
STLABL(I)=0

DO 110 I=1,26
VAR(1)=D

DO 120 1=27,36
VAR(1)=1-27

DO 125 I=1:4
DO 125 J=1520
DO 125 K=1510
ZARRAY (I,JsK}=0
DO 130 I=1,30
TEMP(1)=0
SETDSP (1}
DO 140 I=
DSPVAR(I)
vVIiz(l) =
TYPE(1) = 1
LINNUM(L1)=1
1T=32%#256
STUFF(1s1)=LETTER(3)}
STUFF(2s11=LETTER(38)
STUFF(3,1)=LETTER(38)
STUFF(451)=LETTER(10)
STUFF(5+1)=LETTER(8)
STUFF({6+1)=LETTER(7)
BREAK (1) =CHRMOD
BREAK(2)=LXR100
BREAK(3)=INTON
BREAK(4) =0
BREAK(5)=1T+32
BREAK(6)=126%#256+32
SETDSP (1)=BRIGHT
SETDSP (2)=LYRO
SETDSP(3)=LXR100
SETDSP (4)=CHRMOD
SPDLIN(1)= INTON
SPDLIN(2)= VECMOD
SPDLIN(3)= LXR999
SPDLIN{4)= VIY500
SPDLIN(5)= VDY50
SQUARE {1)=CHRMOD
SQUARE2)=LXR100
SQUARE (3)=INTON
SQUARE(4)= 0
SQUARE(5)=1T+32
SQUARE (6)=35#256+32
SQUARE (7)=NLCR
RETURN

END

=0
15
=0
1

SUBROUTINE SETBUT
NUMBUT =0

LINE NUMBERS
ORGLNO=NUMBUT
TEMP(1)=INTON
TEMP (2)=VECMOD
TEMP (3 1=LXRO
TEMP(4)=V1IY900

TEMP (5)=CHRMOD

CALL MOVU2D(TEMP,0,5)
DO 50 I=1,SCRNMX
NUMBUT=NUMBUT+1

CALL DSPSIZ(BUTTON(NUMBUT))

CALL BNZ2DEC({ISTEMP(1))
TEMP (1)=INTON
TEMP {2)=NLCR

CALL MOVU2ZDITEMP:0,3)
ENDLNO=NUMBUT

115

116

laXaks!

60

80

SPEED LINE
CALL MOVU2D(SPDLINsNs5)

SPEED DOTS

ORGSPD=NUMBUT+1
TEMP(1)=LPNDIM

TEMP(3)=0

DO 60 1=50550050

NUMBUT =NUMBUT+1

CALL DSPSIZ(BUTTON(NUMBUT)}
TEMP (2)=1+V1Y0

CALL MOVU2D{TEMP 50, 3)
ENDSPD=NUMBUT

WORD STOP
NUMBUT=NUMBUIT+1
STPBUT=NUMBUT

CALL DSPSIZ(BUTTON(NUMBUT))
TEMP(1)=BRIGHT
TEMP (2)=VECMOD

TEMP (3)=LXR80ND
TEMP(4)=VIYO

TEMP (5)=CHRMOD
TEMP(6)=LETTER(19)
TEMP(71=LETTER(2M)
TEMP(8)=LETTER(15)
TEMP (9)=LETTER(16)
CALL MOVU2D(TEMP,0,9)

BREAK LINE

NUMBUT=NUMBUT+1

BRKBUT=NUMBUT

CALL DSPSIZ(BUTTON(NUMBUT))}

CALL MOVUZ2D(BREAK+056)

CALL MOVU2D(INTOFF sBRUTTON(BRKBUT)I+2,1)

DSPLIN+DSPLN2

CALL DSPSIZ(DSPLIN)

CALL MOVU2D(SETDSPs0,+3n)
CALL DSPSIZ{(DSPLN2)

CALL MOVU2D(SETDSP 0,30}
PLACE = DSPLIN+&

DISPLAYED VALUES

ORGVAL =NUMBUT

TEMP (1)=TNTOFF
TEMP(2)=LYR800
TEMP(3)=LXR80NO
TEMP (4)=CHRMOD

DO 80 I=1,5
NUMBUT=NUMBUT+1

CALL DSPSIZ{(BUTTON (NUMBUT))
CALL MOVUZD(TEMP,0s4)
CALL MOVUZD(SPACESs0,20)
TEMP (2)=TEMP(2)+CHARHT
ENDVAL =NUMBUT

EDIT FUNCTIONS

FINISH
OLDBUT=0RGLNO+1
SPEED=STPBUT

TEMP (1)=INTON
TEMP (2)=LXR1N0

TEMP (3)=LYR900-CHARHT
TEMP (&) =CHRMOD

CALL MOVU2D(TEMP40,4)
NUMBUT =NUMBUT+1
ENDBUT =NUMBUT

CALL DSPSIZ(BUTTON(NUMBUT))
RETURN

END

30

40

100

120

COMPILATION

SUBROUTINE READST -(LINE)

NUMST = LINE

IF(K2sLE.11GO TO 40

CALL RDIN(INPUT(41))

DO 30 I=1,40
INPUT(I+40)=INPUT(1+40)-129-32767
INPUT(2%1~-1)=TNPUT(T+40} /256
INPUT(2%#1)=INPUT(I+40)~INPUT(2%¥]-1)%256
GO TO 70

CALL TTYENB

DO 50 I=1,80

CALL TLIINCJ)

INPUT(T)=J

CHECK FOR LINE FEED
IF(INPUT(I)eEQs13) GO TO 7n

CONTINUE
DO 80 J=1,80
INPUT(J) =0

DO 85 I=6,80
INPUT(I~-3)1=INPUT (T}

CHECK FOR DOLLAR SIGN
IF(INPUT(1).EQs36) RETURN
VIZ{NUMST)=1
IF(INPUT(1)aNELLETTER(3)) GO TO 100

COMMENT

TYPE(NUMST) =1

CALL PACK

RETURN

IF(INPUT(1).EQ.BLANK) GO TO 120

CALL STNUM(1,S)

STLABL(S)=NUMST

I=INPUT(5) .
IF({INPUT(12)+EQ.EQUAL) GO TO 250
IF(INPUT(6)+EQ.LETTER(26)) GO TO 260
IF(IeEQeLETTER({1)«ANDs INPUT(4)eEQ.LETTER(3)) GO TO 270
IF(I-EQ.LETTER(21)) GO TO 280
IF{IoEQeLETTER{5) e ANDe INPUT{6)EQ.LETTER(20)) GO TO 29n
IF(I.EQ.LETTER(1)) GO TO 130
IF({T.EQ.LETTER(5)) GO YO 140
IF{T1.EQeLETTER!6)) GO TO 160
IF{I.EQsLETTER(14)) GO TO 18N
IF(TEQaLETTER(15)) GO TO 190
IF(1.EQ.LETTER(18)) GO TO 210
IF{I1+EQsEQUAL) GO TO 220

GO TO 999

PAUSE
TYPE(NUMST)=¢4
CALL PACK
RETURN

READ
TYPE(NUMST) =6
CALL VARIAB(9,s1)
CALL PACK
RETURN

IF
IF(INPUT(20)EQe «ORs INPUT(20).EQ.BLANK) GO TO 17N

LOGICAL IF

CALL VARIAB(751)

CALL VARIAB(12,2)

CALL STNUM(2045)

STATE(NUMST+3)=S

CALL PACK

IFCINPUT(9)1.EQLLETTER(5}) TYPE(NUMSTY=22
IFUINPUT(9)EQ.LETTER(14)) TYPE(NUMST)=23

117

IFCINPUT(9)EQaLETTER(12)a ANDINPUT(10).EQ.LFTTER(20))
X TYPE(NUMST) =24
IF{INPUT(9)EQeLETTER(121 ANDWINPUT{1IN)}oEQ.LETTER(5))
X TYPE(NUMST)=2%
TF{INPUT(9)eEQ.LETTFR(7)sANDINPUT(1Nn)sFQaLETTER{2N))
X TYPE(NUMST) =26
IFCINPUT(9)oEQW.LETTER(7) s ANDec INPUT(10)eEQ.LETTER(5))
X TYPE(NUMST)=27
RETURN

C ARITHMETIC IF

170 TYPE{(NUMST)=21
CALL VARIAB(7,1)
CALL STNUM(9,5)
STATE(NUMST,2)=5
CALL STNUM(12,5)
STATE(NUMSTs3)=5S
CALL STNUM(15,%)
STATE(NUMST 41 =5

CALL PACK
RETURN

C

C END

180 TYPE(NUMST)=5
CALL PACK
RETURN

C

C GO TO

190 IF{INPUT(15)sNFan oANDe INPUT(15)aNF.BLANK} GO TO 200

C

C GO TO SS
TYPE{(NUMST)=2
CALL STNUM(10sS)
STATE(NUMSTs1})=S
CALL PACK
RETURN

C

C COMPUTED GO TO

200 TYPE{NUMST)=3
CALL STNUM(11,5)
STATE(NUMST»1)=5S
CALL STNUM(14,5)
STATE(NUMST,2)=S
CALL STNUM(17,5)
STATE(NUMST»3})=5
CALL VARIAB(21,4)

CALL PACK
RETURN

C

C WRITE

210 TYPE(NUMST)=7
CALL VARIAB(10,1)

CALL PACK
RETURN

C

C ASSIGNMENT

220 CALL VARIAB(4,1)
CALL VARIAB(6,2)
OPONE=INPUT(7)
IF(OPONE4NEeN oANDe OPONEJNE.BLANK) GO TO 23n
TYPE(NUMST)=8
CALL PACK
RETURN

230 CALL VARTIAB(8,3)
IF{OPONE.EQ«PLUS) TYPE(NUMST}=9
IF(OPONEL.EQsMINUS) TYPE(NUMST)=13
IF(OPONE.EQaSTAR) TYPE(NUMST)=17
OPTWO=INPUT(9)
IF(OPTWONESO +ANDs OPTWOLNE«BLANK) GO TO 240
CALL PACK
RETURN

240 CALL VARIAB(10,4)
IF(OPTWOLEQ.PLUS) TYPE(NUMST)=TYPE(NUMST)+1
IF(OPTWOLEQeMINUS) TYPE(NUMST)=TYPF (NUMST)+2

118

250

260

270

110

10

IF{OPTWO.EQeSTAR) TYPE(NUMST)=TYPF(NUMST)+3
CALL PACK
RETURN

ARRAY=VARIABLE
TYPE(NUMST)=28
CALL VARIAB(651)
CALL VARIAB(8,2)
CALL VARTAB(10,3)
CALL VARIAB{13,4)
CALL PACK

RETURN

VARIABLE = ARRAY
TYPE{(NUMST)=29
CALL VARIAB(4,1)
CALL VARIAB(8,21
CALL VARTAB(10,3)
CALL VARIAB(12,4)
CALL PACK

RETURN

CALL
TYPE(NUMST)=30
CALL STNUM(16,5)
STATE(NUMST,11=S
CALL PACK

RETURN

SUBROUTINE
TYPE(NUMST)=31
CALL PACK
RETURN

RETURN
TYPE(NUMST)=32
CALL PACK
RETURN

CALL EDERR(14)
END

SUBROUTINE STNUM {MyN)

DO 110 I=1,2

TEMP(11)=100

L=1+M-1

DO 110 J=27,36

IF { INPUT(L)EQJ.LETTER(JY) TEMP(I})=J-27
CONTINUE
IF(TEMP{1)%TEMP(2)+GTe90s0ReTEMP({11+TEMP(21+EQ«Q} CALL EDERR{(30)
N=TEMP (1) * 10 + TEMP(2)

RETURN

END

SUBROUTINE VARIAR({I,J))

DO 20 K=1436

IFCINPUTI(T) oEQs LETTERIK)) STATEINUMST,J)=K
RETURN

END

SUBROUTINE PACK

J=0

DO 10 I=142152

J=J+1

STUFF(JSNUMSTY=INPUT(T) *# 256 + INPUT(I+1}
RETURN

END

EXECUTION
SUBROUTINE XECUTE (LINE)

119

120

1020

1030
1070
1080
1090
1100
1110
1120
1130
1260
1270
1280
1290
130n
1310
1320
1900

30

20

1074

IF(LINEsEQ.0)CALL EXERR(20)

EXLINE = LINE

IF (LPNCHK(1)-GTo1) CALL PENSEE

J1=STATE(EXLINE, 1)

J2=STATE(EXLINEs2)

J3=STATE(EXLINE,3)

J4=STATE(EXLINEs4}

IVIZ=VIZ(EXLINE)

ITYPE=TYPE(EXLINE)

IF (IVIZaEQelsANDsLBUF(EXLINE)aEQeN) CALL REGEN(EXLINE)

IF (IVIZeLTe4) GO TO (102051900,1030)s IVIZ

GO TO (103051070:1080,1N90,1100,111N5112051130,113ns1130,1130,
X 11305113051130,1130,1130511305113051130+11305126051270,1270,
X 1270,1270:1270,12705,128051290+130051310,1320),1TYPE

CALL XCOMNT

CALL XGOTO

CALL XCGOTO

CALL XPAUSE

CALL XEND

CALL XREAD

CALL XWRITE

CALL XRITH(ITYPE~T)
CALL XARTHF

CALL XLOGIF(ITYPE-21)
CALL XARREV

CALL XVEARR

CALL XSBCAL

CALL XSUBRU

CALL XRETRN

IF (BRKFLG.EQe.N) CALL BRAKE

BRKFLG = 0
GO TO 1n20
END

SUBROUTINE PENSEE

INTEGER PENBUF(5n)

CALL LPNRD(PENBUF)

I=TABS({PENBUF(2))

CALL LPNCLR

IF (1eGToBUTTON(STPRUT) s ANDoI LT RUTTON(STPBUT+1)) CALL STOOP
CALL MOVU2D (INTOFFsBUTTON(BRKBUT}+2,1}
SETDSP(2)=LYRO

CALL MOVUZD(SETDSP,DSPLN2,30)

DO 30 J = ORGSPDENDSPD

IF (1eLToBUTTON(J)eOReIeGToBUTTON({J+1)) GO TO 30
CALL MOVU2D (LPNDIMSBUTTON(SPEED) 1}

SPEED =

CALL MOVU2D (BRIGHT,BUTTON(SPEED) 1)

RETURN)

CONTINUE

RETURN

END

SUBROUTINE XCOMNT
IF(1VIZ4GTe2) GO TO 20

CALL UNDO

CALL MOVU2D(LETTER(3),PLACEs1)
CALL DELAY

CALL XECUTE(POINT(EXLINE))

END :

SUBROUTINE XGOTO

IF(IVIZ +GTe 2 } GO TO 1074
CALL UNDO '

CALL MOVU2D(GOTOSPLACE 4}

CALL DELAY

IFISTLABL{J1) »EQs 0) CALL EXERR(16}
CALL XECUTE(STLABL(J1))
END

100

1092

1091

1105

1102

1111

1115

10

20

1121

1125

10

SUBROUTINE XCGOTO

I=VAR{J4)

IF(RANGE (Is1+3)) CALL EXERR(2)
J1=STATE(EXLINE-I)

IF(IVIZ GTa 2) GO TO 100
CALL UNDO

CALL MOVU2D(CGOTO(1,1)sPLACEs10)

CALL DELAY

IF(STLABL{J1) oEQe 0) CALL EXERR(17)
CALL XECUTE(STLABL(J1))
END

SUBROUTINE XPAUSE

IF(IVIZ +GTe 2) GO 70 1092
SPOT=PLACE

CALL UNDO

GO TO 1091

CALL MOVU2D(BRIGHT sDSPLN2,1)
SPOT=DSPLN2+3

CALL MOVUZD(PAUSESPOT.4)
EXLINE=POINT(EXLINE)

CALL STooP

END

SUBROUTINE XEND

IF(IVIZ .GTe 2) GO TO 1105
CALL UNDO

SPOT=PLACE

GO TO 1102

CALL MOVU2D(BRIGHT sDSPLN2s1)

5POT=DSPLN2+3

CALL MOVU2D(END,SPOTs3)

CALL sToop

END

SUBROUTINE XREAD

IF(IVIZ oGTa 2)y GO TO 1115
CALL UNDO

CALL MOVU2D(READ,PLACE 4}

READ(151111) VAR(J1)

FORMAT (15)

GO 70 10

CALL MOVU2D(STUFF{1sEXLINE)sDSPLN2+3511)
CALL MOVU2D(BRIGHT sDSPLN2s1)
READ(151111) VAR(JIL)

CALL MOVU2D(INTOFF,DSPLN2s1)

DO 20 I=1,5

IF(DSPVAR(I)eEQaJ1l}) CALL PUTVAR(I,J1)
CONT INUE

CALL XECUTE(POINT(EXLINE))

END

SUBROUTINE XWRITE

IF(IVIZ o GToe 2) GO TO 1125
CALL UNDO

CALL MOVU2D(WRITEsPLACE,s5)

WRITE(151121) VAR(J1)

FORMAT(/167/)

CALL DELAY

GO TO 10

CALL MOVU2D (STUFF (1,EXLIME)sDSPLN2+3511)
CALL MOVU2D{BRIGHT sDSPLN251)

WRITE(151121) VAR{J1)

CALL MOVUZD(INTOFF sDSPLN2,1)

CALL XECUTE(POINT(EXLINEY?Y

END

SUBROUTINE XRITH(N)

121

122

1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250

2970
3000

1262
1264

1266
3100

3200

3010
3020

3030

1270

1280

X

GO TO (11305114051150511605117051180512190+1200,
121051220512305124051250)s N

VAR(J1)=VAR(J2)

GO TO 3000

IDUM= VAR(J3)

GO TO 2970

IDUM= VAR(J3)+VAR(J4)

GO TO 2970

IDUM= VAR({J3)-VAR(J4)

GO TO 2970

IDUM= VAR(J3)#VAR(J4)

GO TO 2970

IDUM= =VAR(J3)

GO TO 2970

IDUM= VAR(J4)=VAR(J3)

GO TO 2970

IDUM= =VAR({J3)~VAR(J4)

GO TO 2970

IDUM= ~VAR(J3)#VAR(J4)

GO TO 2970

VAR(J1)=VAR({J2)*VAR(J3)

GO TO 3000

VAR(J1)=VAR(J2)*VAR(J3}+VAR(J4)

GO TO 3000

VAR(J1Y=VAR{S2)%VAR(JIB)~VAR(I4)

GO TO 3000

VAR(J1)=VAR(J2}%#VAR(J3)*VAR(J4)

GO TO 30n0

VAR(JII=IDUM +VAR({J2)

CALL XARITH

END

SUBROUTINE XARTHF

IF(VAR(J1)) 1262+1264,1266

JDUM=1

GO TO 3100

JDuUM=2

GO TO 3100

JDUM=3

JI=STATE(EXLINF,JDUM+1)

IFUIVIZ oGTe 2 y GO TO 3200
CALL UNDO

CALL MOVUZD(ARTHIF (1,JDUM) sPLACE,8)
CALL DELAY

IF(STLABL(J1) «EQs 0) CALL EXERR(1)
CALL XECUTE(STLABL(J1))

END

SUBROUTINE XARITH

DO 3010 1=1,5
IF(DSPVAR(I}«NF,J1) GO TO 301cC
CALL PUTVAR(I,J1)

GO TO 3020

CONTINUE

IF(IVIZ oGTs 2) GO TO 3030
CALL UNDO

CALL MOVU2D({SPACES,PLACE,12)
TEMP (1)=EQUAL

CALL BN2DEC(VAR(J1) o TEMP(2}))
CALL MOVU2D(TEMPPLACE+544)
CALL DELAY

CALL XECUTE(POINT(EXLINE}))

END

SUBROUTINE XLOGIF (N)

GO TO (1270+1280+12905130051310+1320)s N
IF(VAR({J1).EQsVAR{J2)) GO TO 1340

GO TO 1330

IF(VAR(J1)aNESVAR(JZ2)) GO TO 1340

GO TO 13130

1290
1300
1310
1320

1330
1340

1350

10

10

20

10

20

10

20

IFIVAR{J1).LTeVAR(J2Z2)) GO TO 1340
GO TO 1330

IF(VAR(J1}sLE-VAR(J2)) GO TO 1340
GO TO 1330

IF(VAR(J1).GTaVAR(JZ2)) GO TO 1340
GO TO 1330

IF(VAR(J1)«GEsVAR(J2)) GO TO 1340
GO TO 1330

CALL XNOLGF

CALL XYSLGF

END

SUBROUTINE XYSLGF
J1=STATE(EXLINE,3)

IF(IVIZ 4GTe 2) GO TO 1350
CALL UNDO

CALL MOVUZD(YESLGT sPLACE+9)

CALL DELAY

IF(STLABL(J1) .EQs 0) CALL EXERR(15)
CALL XECUTE (STLABL(J1))
END

SUBROUTINE XNOLGF

IF(IVIZ oGTe 2 } GO TO 10
CALL UNDO

CALL MOVU2D(NOLGTsPLACE.7)

‘CALL DELAY

CALL XECUTE(POINT(EXLINE))

END

SUBROUTINE XSUBRU

INTEGER SUBR(7)

DATA SUBR{1)sSURR(2)sSURR(3)sSUBR(4)$SURR(5)9SUBR(6YsSIIBR(T)
X /2H s2H S 2HUB,2HRO 9 2HUT s 2HIN 4 1HE /

DO 10 I=1,7
IF(SUBR(7)eLTeN)SUBRII)}=SURR(I)-128~32767~1
IF(IVIZeGTe2) GO TO -20

CALL UNDO

CALL MOVU2D(SUBRPLACE,7)

CALL DELAY

CALL XECUTE(POINT(EXLINE))

END

SUBROUTINE XSBCAL

INTEGER CALL({4)

DATA CALL(1)sCALLI2)sCALLI23)YsCALL(4)/2H 92H Co2HAL 91HL/
DO 10 I=1,4

TF(CALL(4) ol TeO)CALL{T)=CALL(])-128~32767-1
IFtIVIZeGTe2) GO TO 20

CALL UNDO

CALL MOVU2ZD(CALL4PLACE,4)

CALL DELAY

IF(STLABL(J1)+EQen) CALL EXERRI(5n)
SUBRET=EXLINE

CALL XECUTE(STLABL(J1))

END

SUBROUTINE XRETRN

INTEGER RETU(5) .
DATA RETU(1)sRETU(2)sRETU(3)}>RETU(4),RETU(5)/2H s2H R,
X 2HET 4 2HUR s 1HN/

DO 10 I=1,5
IF(RFTU(S)eLTO)RETU(TI=RETU(1)-128-32767-1
IF(IVIZeGTe2) S0 TO 20

CALL UNDO

CALL MOVU2D(RETU,PLACE,S)

CALL DELAY

CALL XECUTE(POINT(SUBRET))

END

123

C
SUBROUTINE XARREV
I=VAR(J1)
J=VAR(J2)
K=VAR(J3)
ZARRAY (15JsK)=VAR(JG)
Jl=Ja
CALL XARITH
END
d
C
SUBROUTINE XVEARR
I=VAR(J2)
J=VAR(J3)
K=VAR(J4)
VAR{J1)1=ZARRAY (T 5J5K)
CALL XARITH
END
C
C
SUBROUT INE BRAKE
TEMP(1) = BRIGHT
TEMP(2) = LYR9DO-LBUF{EXL INE)*CHARHT
CALL MOVU2D (TEMP,BUTTON{BRKBUT)+2,2)
BRKFLG=1
CALL STOOP
END
c
c
SUBROUTINE UNDO
IF (PRESLN.EQs0) GO TO 5n
CALL MOVU2D (INTON +BUTTON(OLDBUT) 1)
CALL MOVU2D (IMTON,DBUF (PRESLN) ;1)
50 OLDBUT = ORGLNO + LBUF (EXLINE)
PRESLN = EXLINE
SETDSP(2) = LYR9O0~LBUF (EXL INE} #CHARHT
CALL MOVU2D (SETDSP,DSPLIN325}
CALL MOVU2D (BRIGHT 4BUTTON(OLDBUT)»1)
RETURN
END
c
C

SUBROUTINE DELAY
K=(ENDSPD-SPEED)#5
DO 20 I=1.K
DO 20 L=1,2
DO 20 J=1,5000
20 CONTINUE
RETURN
END

SUBROUTINE EXERR(N)
WRITE(1,10)N
10 FORMAT{16H EXECUTION ERRORsI4)
CALL EDITOR
END
C FUNCTION

SUBROUTINE EDITOR

40 CALL TTYFNR

50 IF{LPNCHK{1)eGTe1) CALL XECUTE(EXLINE)
CALL TTYCHKI(FL~sCHARTR)
IF{sNOT<FLG) GO TO 50
READ{15100) FCNsK15K2

100 FORMAT(A2+212)
DO 150 I=1,16
IF(FCNeEQaCOM(I)) GO TO 300

150 CONTINUE
CALL EDERR(20)

300 IF{K2:EQa.99) GO TO 40
LINEI=LTNNUMIK])
LINE2=LINNUM(K2)

124

V@OV WN

N b= bt bt b e b e
OV N VMHEWNIN-O

30

35

v
v

200

10

20

40

50

80

GO TO (152933455569 7585951N5119125123:1451551651751851942Nn)51

CALL CHANGE
CALL INSERT
CALL DELFTE
CALL CONDEN
CALL EXPAND
CALL START
CALL MOVE
CALL SETBRK
CALL KILBRK
CALL VARSET
CALL SHOVAR
CALL REMWAR
CALL SAVE
CALL RESTRT
CALL PAGE
CALL ROLL
CALL EDERR(20)
CALL EDERR(20)
CALL EDERR(20)
CALL EDERR(20)
END

SUBROUTINE STOOP

CALL MOVU2D (LPNDIM,BUTTON(SPEED) 1)
SPEED=STPBUT

CALL MOVU2D (BRIGHTsBUTTON(STPBUT) 1)
CALL EDITOR

END

SUBROUTINE REGEN(IJK)

IF (T1JKeGT.TOTST) CALL EDERRI{36)
IF(IJKeNELO)TOPLIN=TUK

CALL DSPCUT(BUTTON(ENDBUT))
DO 10 I=1,TOTST

LBUF(I)=0

DBUF(IY=0

CALL MOVU2D(INTOFF ,BUTTON{(BRKBUT)+4+2,1)
CFLAG=1

LINE=TOPLIN

SCRNSZ=0

JVIZ=VIZ(LINE)

IF tJVIZ.GTe4) GO TO 8N

GO TO (30,30,80:50),JVIZ
IF(SCRNSZ-GE+SCRNMX) G0 TO 200
SCRNSZ=SCRNSZ+1

GO TO (40+35),JVIZ

BREAK (4) =LYR9NDN-SCRNSZ*CHARHT
CALL MOVUZD(BREAK+0+6)

CALL DSPSIZ(DBUF(LINEY)Y

LBUF (LINE)=SCRNSZ

LINNUM (SCRNSZ) =L INE

CFLAG=0

TEMP(1)=INTON

TEMP(2)=LXR100

CALL MOVU2DITEMP,0,2)

CALL MOVU2D(STUFF(1sLINE)sNs11)
CALL MOVUZ2DINLCR5051)

GO 10 80

IF{CFLAG,EQ.1)GO TO 80

CFLAG=1

SQUARE (4)=LYR900-SCRNSZ*CHARHT
CALL MOVUZD(SQUARE057)
LINE=POINT(LINE)

IF(LINEsNE.O) GO TO 20

CALL MOVU2D(INTON,BUTTON(OLDBUT) »1)
CALL MOVU2D(INTOFF sDSPLINS1)
IF(LBUF(PRESLN) sFQ.0) RETURN

CALL MOVUZ2D(LYROND~LBUF (PRFESLN) #CHARHT s BUTTON(BRKBIIT)+341)

OLDBUT =ORGLNO+LBUF (PRESLN)

CALL MOVU2D(BRIGHT »BUTTON(OLDBRUT) 1)
RETURN

END

SUBROUTINE CHANGE

IF(RANGE (K1515SCRNSZ))CALL EDERR(1)
CALL READST(LINE1}

CALL REGEN(0)

CALL T1OUT(10)

CALL EDITOR

END

SUBROUTINE INSERT
IF{RANGE (K15s1sSCRNSZ)} CALL EDERR{2)
DO 20 I=1,K2
CALL READST(TOTST+1)

C CHECK FOR DOLLAR SIGN
IFCINPUT(1VeNEe36) GO TO 5
CALL SEARCH(4s0s1)

GO TO 30

5 TOTST=TOTST+1
DUMMY=LINE 1

10 L INE 1=DUMMY

DUMMY=POINT(LINE1)
IF(VIZ(DUMMY) oGTe2 »ANDDUMMYeNE.O) GO TO 1n
POINT{TOTST)=DUMMY
POINT(LINE1)=TOTST
20 LINE1=TOTST
30 CALL REGEN(D)
CALL TlouT(1n)
CALL EDITOR
END

SUBROUTINE DELETE
IF(RANGE (K1s1+SCRNSZ)) CALL EDERR(24)
DUMMY=LINE1

133 DUMMY= POINT {DUMMY)
IF(VIZ(DUMMY) +EQe 3) GO TO 133
IF(VIZ(DUMMY) +GEe &) CALL EDERR(12)
VIZ(LINE1)=3
CALL REGEN{(O}Y
CALL EDITOR
END

SUBROUTINE CONDEN
IF(KleLEs O «ORe K14GEeK2 «OReK2 oGTo SCRNSZ) CALL EDERR(27)
CFLAG=0
10 LINE1=POINT(LINET)
IF{LINE1,EQs0) GO TO 3n
JVIZ=VIZ(LINEL}
IF(JVIZ oLTe 4) GO TO (20+20+10)5JVIZ
IF(CFLAG +EQe 1) VIZ(LINEl)=JVIZ+1
GO T0 10
20 K1=K1+1
IF(K1eGTeK2) GO TO 30
CFLAG=1
VIZ(LINEl)=4
GO TO 10
30 CALL REGEN(0)
CALL EDITOR
END

SUBROUTINE EXPAND

IF(RANGE (K1515sSCRNSZ)) CALL EDERR{28)
10 LINE1=POINT(LINE])

IF(LINE1.EQs0) GO TO 30

JVIZ=VIZ (LINEL)

[F(JVIZaLTe5) GO TO (30:30510:20),JVIZ
VIZ(LINE1)=JVIZ-~1
GO To 10
20 VIZ(LINE1)=1
GO TO 10

126

30

10
20

30
40

50
60

1o

211

CALL REGEN(0)
CALL EDITOR
END

SUBROUTINE START

IF{RANGE (K1s1sSCRNSZ)) CALL EDERR(5)
EXLINE=LINEL

BRKFLG=0

IF (VIZ(LINE1)eEQe2) BRKFLG = 1

CALL UNDO

CALL REGFN(0)

CALL EDITOR

END

SUBROUTINE MOVE

IF (RANGE(K1s1,SCRNSZ)) CALL EDERR(13)
IF (RANGE(K2514SCRNSZ)Y) CALL FDFRR({14)
IF (LINElsEQel) CALL EDERR(15}
IF({K1eEQeK?2s0RK?2+EQeK1-1) CALL EDFRR{15H
DO 10 LINFA = 1,100n

IF (POINT(LINEA)2EQ.LINEL} GO TO ?7n

CONT INUE

DO 30 LINEB= LINEl,1n0n

1 = POINTI(LINEB)
IF(VIZ{I)ellEe2s0ReT.EQeN) GO TO 40
CONTINUE

DO 50 LINEC = LINE2,1000

J = POINT(LINEC)
IFIVIZ(J)elEe2s0ReJ4EQsD) GO TO 60
CONTINUE
POINT (LINEA)
POINT (LINEB)
POINT (LINEQC)
CALL REGEN(0)
CALL EDITOR
END

1
J
LINE]

o n

SUBROUTINE SETBRK

IF(RANGE (K1s1sSCRNSZ)) CALL EDERR(3)
VIZ(LINE1)=2

CALL REGEN(O)

CALL EDITOR

END

SUBROUTINE KILBRK

IF(RANGE (K1515SCRNSZ)) CALL EDERR{4)
VIZILINED)=1

CALL REGEN(0)

CALL EDITOR

END

SUBROUTINE VARSFET

IF(RANGE(K1,1+26)) CALL EDFRR(9)}

VAR (K1)=K2

DO 10 I=1,.5

IF(DSPVAR(1) «+EQs K1) CALL PUTVAR(I,K1)
CONTINUE

CALL EDITOR

END

SUBROUTINE SHOVAR
IF(RANGE(K1s1526)) CALL FDFRR(1n)
DO 211 1=1,%

IF(DSPVAR(I)«EQ.K1) CALL FDITQR
CONTINUE

DO 215 1=1,5

IF(DSPVAR(I)sNEWLN) GO TO 215
CALL PUTVARL(T,5K1)

127

128

215

222

10

20

10

15

CALL EDITOR
CONTINUE

CALL EDERRI(11)
END

SUBROUTINE PUTVAR(I,J)
DSPVAR(1)=J

1=1+0RGVAL
TEMP(1)=FQUAL+LETTER(J) * 256
CALL BN2DEC(VAR(J) sTEMP{2))
CALL MOVU2D(TEMPsBUTTON(T)+454)
CALL MOVUZD({INTONSBUTTON({I)»1)
RETURN

END

'SUBROUTINF REMVAR

DO 222 I=1,5
IF(DSPVAR(T1)eNF.K1) GO TO 222
N=1+0ORGVAL

CALL MOVU2D(INTOFF,BUTTON(N)»1)
DSPVAR(I)=0

CALL EDITOR

CONTINUE

CALL EDITOR

END

SUBROUTINE SAVFE

DATA T1SPACESIDNL1/3252H%1/
J=1

J=POINT(J)

IF(JeEQen) GO TO 2n
IF(VIZ(J)eEQe3) GO TO 10
DO 5 1=1,80
INPUT(T)=1SPACE

CALL OUTLIN(U)

CALL WRLS{INPUT(1})

GO 70 10

INPUT(41)=1DOL1]

CALL WRLS{INPUT(41))
CALL SEARCH(430+2)

CALL RESTRT

END

SUBROUTINE OUTLIN(LINE)

DO 10 I=2,11

INPUT{2#1+2)=STUFF(TsLINE) /256
INPUT(2#T43)=STUFF(TsLINE)-INPUT(2%T+2)%256
INPUT(1)=STUFF(1,LINE) /256
INPUT(2)=STUFF(1,LINE)-INPUT{1)%#256

DO 15 1=1,440 .
INPUT(I)=INPUT(2#]-1)%#256+INPUT(2%1)+128-32767~1
RETURN

END

SUBROUTINE RESTRT
CALL REGEN (1)
CALL EDITOR

END

SUBROUTINE PAGE

I=LINNUM (SCRNSZ)
IF(POINT(1)eEQs0) CALL EDITOR
CALL REGEN (POINT(1))

CALL EDITOR

END

SUBROUTINE ROLL
IF(K1leaLE.O0) CALL EDITOR
IOUM=TOPLIN
JDUM=SPEED
SPEED = ENDSPD-2
DO 20 I=1sKl

10 IDUM=POINT (IDUM)
IF(IDUM.EQ.0) GO TO 30
IF(VIZ{IDUM) 4EQs3e0RVIZ{IDUM)sGTo4) GO TO 10
CALL DELAY
TOPLIN=1DUM

20 CALL REGEN(IDUM)

30 SPEED=JDUM
CALL EDITOR

END
C
C
LOGICAL FUNCTION RANGE(IsJsK)
RANGE= s TRUE
IF(] sGEs J sANDe I oLEs K) RANGE=.FALSF.
RETURN
END
C
C

SUBROUTINE EDERR(N)
WRITE{1,10)N

10 FORMAT (11H .EDIT ERRORsI4)
CALL EDITOR

END
C
C
SUBROUTINE RENTRY
CALL INIT
CALL EDITOR
END

129

NASA-Langley, 1970 — 8 C—89

) et : B -

NATIONAL AERONAUTICS AND SPACE ADMINISTRA’I ION
- WASHINGTON D. o 20546

B OrFicrAL BUSINESS

. FIRST t;"LAS'S" MAIL

o ' POSTAGE. AND. EFEES PAID
T o " NATIONAL AERONAUTICS ;AN
N . SPACE ADMINISTRATION

S ki .
b teghmca[information generated under a NASA, "
;icofitract of grant and considered an 1mportant

- comtmbvmon o oxxst‘mg knowledge

appllcaqons Pubixcatmns include Tech; Briefs,. * ’
? 'f ’Technology Utnhzatmn Reports ard

7 -

Technology Surveys LN -

FAN -
“' : UL T hostiistit: }feiir;*ﬁ::;:?%m‘:%:éﬁ,
) ¢ — /< S i L ; } ‘X.‘ et — c
s ‘/‘ "The. demnaut:cal ami Jpace activities of té)e Umted Smtex shall- be*‘f .' \‘; "
©own T condicted so as to contribute . . . to-the expansion:.-of buman knowl- .
,,’ R - edge of .phenonen Z in-the atw;wplaem and Space. The Administration - . . i
LN shall provide for the widest pmancable and appropriate dissemination - : ‘ ~
~ ' R C-of mfommt:on concemmg its actrumef ami the. rewlt: tbereof g
,,/ N “ N R
DR A % N -——-NATIONAL AERONAUTICS AND 3PACE ACT 015 1958 L e /\‘{, : =
- - o R - ; «.,ﬂ L . .
NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
\ ! / - w
, “ o {'\ TECHI;HCAL REPORTS Sdentxﬁc and | o ‘TECHi\IICKL TRANSLATIONS Informatlon
“w. = technical information consndefed lmportamt -~ published iri 4 foreign language considered * g "
T complete; arid a Jastmg comznburfon w0 exnstmg ks ‘jte m}mt NASA dnstnbutlon in Enghsh e A
knowledge ‘ L
_ T e ' - 2 T SPEC;’AL PUBLICATIO‘NS Informatxon ‘ X
S TECHNICAL NOTES Informatton less broad = derived from or of- value 10 NASA activities. -~
-~ in scope but neverﬁheless of i importarice as a — Pubhcanoné inélyde conference proceed;_ngs o
S conmbutxon to émstmg knowlédge\ i \ monographs data ‘compilations, handbooks,~ . Lo, L
o o N "*sourcebooks, emd quaal blbhographles A
o iy TECHNICAL MEMORANDUMS SN - el T e
; 5 Ve Informanon recexvmg limited distribution . " TECHNOLOGY UTI\LIZATION ;
e becausé of prelumnary data, securlty cia531ﬁca- - PYUBLICATIONS: Inforniation of technology o
‘ ‘txon or Othe‘f}easons : ST LT used ‘by NASA that,may be of particular EE
N o s mferest in.commercial and othér‘pon- -aerospace B '
I .gCONTRACTOR REPORTS ‘Scjentific and

e 4 \ Detalls on tha avarlabu/ty of these pubhcaﬁons may be obtamed from .
- o ., \

. SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

- r

Washmgton‘ D C 20546

[

NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

